Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches
Min Yu, Zonghai Li
Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches
Hepatocellular carcinoma (HCC) is currently the fifth most common malignancy and the third leading cause of cancer-related mortalities worldwide. In the last few years, treatments for HCC have significantly improved from a mere surgical resection to a series of minimally invasive therapies and targeted drugs. However, recurrence frequently occurs even upon curative therapeutics, and drug therapies generally produce disappointing results, with the overall prognosis dismal. This challenging clinical scenario warrants new effective and life-prolonging strategies for patients with HCC. Compelling evidence suggests that NK cells play a critical role in the immune function of the liver and in the immune defenses against HCC, indicating that HCC might be an ideal target for NK cell-based immunotherapies. To obtain comprehensive insights into the putative influence of NK cells on HCC, this paper summarizes current knowledge on NK cells in HCC and discusses the usefulness and prospects of NK cell-based immunotherapies. Critical issues that require consideration for the successful clinical translation of NK cell-based therapies are also addressed. If appropriately used and further optimized, NK cell-based therapies could dominate important roles in the future immunotherapeutic market of HCC.
natural killer cell / hepatocellular carcinoma / immunotherapy
[1] |
Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin 2012; 62(6): 394–399
CrossRef
Pubmed
Google scholar
|
[2] |
Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016; 150(4): 835–853
CrossRef
Pubmed
Google scholar
|
[3] |
Forner A, Gilabert M, Bruix J, Raoul JL. Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol 2014; 11(9): 525–535
CrossRef
Pubmed
Google scholar
|
[4] |
Sieghart W, Hucke F, Peck-Radosavljevic M. Transarterial chemoembolization: modalities, indication, and patient selection. J Hepatol 2015; 62(5): 1187–1195
CrossRef
Pubmed
Google scholar
|
[5] |
Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015; 12(7): 408–424
CrossRef
Pubmed
Google scholar
|
[6] |
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480(7378): 480–489
CrossRef
Pubmed
Google scholar
|
[7] |
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
CrossRef
Pubmed
Google scholar
|
[8] |
Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 2015; 15(4): 243–254
CrossRef
Pubmed
Google scholar
|
[9] |
Herberman RB, Reynolds CW, Ortaldo JR. Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol 1986; 4(1): 651–680
CrossRef
Pubmed
Google scholar
|
[10] |
Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 2008; 8(9): 713–725
CrossRef
Pubmed
Google scholar
|
[11] |
de Saint Basile G, Ménasché G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 2010; 10(8): 568–579
CrossRef
Pubmed
Google scholar
|
[12] |
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PMNK. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015; 6: 368
CrossRef
Pubmed
Google scholar
|
[13] |
Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP Jr, Takahashi Y, Suffredini DA, Linehan WM, Caligiuri MA, Childs RW. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004; 104(1): 170–177
CrossRef
Pubmed
Google scholar
|
[14] |
Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socié G, Rio B, Sirvent A, Renaud M, Madero L, Mohty M, Ferra C, Garnier F, Loiseau P, Garcia J, Lecchi L, Kögler G, Beguin Y, Navarrete C, Devos T, Ionescu I, Boudjedir K, Herr AL, Gluckman E, Rocha V; Eurocord-Netcord and Acute Leukaemia Working Party of the EBMT.KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia 2009; 23(3): 492–500
CrossRef
Pubmed
Google scholar
|
[15] |
Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010; 28(6): 955–959
CrossRef
Pubmed
Google scholar
|
[16] |
Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001; 7(1): 94–100
CrossRef
Pubmed
Google scholar
|
[17] |
Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011; 11(10): 658–671
CrossRef
Pubmed
Google scholar
|
[18] |
Chew V, Chen J, Lee D, Loh E, Lee J, Lim KH, Weber A, Slankamenac K, Poon RT, Yang H, Ooi LL, Toh HC, Heikenwalder M, Ng IO, Nardin A, Abastado JP. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 2012; 61(3): 427–438
CrossRef
Pubmed
Google scholar
|
[19] |
Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 2006; 43(2): 362–372
CrossRef
Pubmed
Google scholar
|
[20] |
Chew V, Tow C, Teo M, Wong HL, Chan J, Gehring A, Loh M, Bolze A, Quek R, Lee VK, Lee KH, Abastado JP, Toh HC, Nardin A. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 2010; 52(3): 370–379
CrossRef
Pubmed
Google scholar
|
[21] |
Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67: 103–117
CrossRef
Pubmed
Google scholar
|
[22] |
Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology 2013; 57(4): 1654–1662
CrossRef
Pubmed
Google scholar
|
[23] |
Coulouarn C, Factor VM, Conner EA, Thorgeirsson SS. Genomic modeling of tumor onset and progression in a mouse model of aggressive human liver cancer. Carcinogenesis 2011; 32(10): 1434–1440
CrossRef
Pubmed
Google scholar
|
[24] |
Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, Tien P, Wang FS. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008; 129(3): 428–437
CrossRef
Pubmed
Google scholar
|
[25] |
Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 2009; 86(3): 513–528
CrossRef
Pubmed
Google scholar
|
[26] |
He L, Wang X, Montell DJ. Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 2011; 21(5): 612–619
CrossRef
Pubmed
Google scholar
|
[27] |
Chirinda W, Chen H. Comparative study of disability-free life expectancy across six low- and middle-income countries. Geriatr Gerontol Int 2017; 17(4): 637–644
CrossRef
Pubmed
Google scholar
|
[28] |
Une Y, Kawata A, Uchino J. Adopted immunochemotherapy using IL-2 and spleen LAK cell—randomized study. Nihon Geka Gakkai Zasshi 1991; 92(9): 1330–1333 (in Japanese)
Pubmed
|
[29] |
Lygidakis NJ, Pothoulakis J, Konstantinidou AE, Spanos H. Hepatocellular carcinoma: surgical resection versus surgical resection combined with pre- and post-operative locoregional immunotherapy-chemotherapy. A prospective randomized study. Anticancer Res 1995; 15(2): 543–550
Pubmed
|
[30] |
Kawata A, Une Y, Hosokawa M, Wakizaka Y, Namieno T, Uchino J, Kobayashi H. Adjuvant chemoimmunotherapy for hepatocellular carcinoma patients. Adriamycin, interleukin-2, and lymphokine-activated killer cells versus adriamycin alone. Am J Clin Oncol 1995; 18(3): 257–262
CrossRef
Pubmed
Google scholar
|
[31] |
Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31(1): 227–258
CrossRef
Pubmed
Google scholar
|
[32] |
Beneker C. Report from Hannover. Family practitioners in emergency admission. MMW Fortschr Med 2015; 157(1): 8–9 (in German)
CrossRef
Pubmed
Google scholar
|
[33] |
Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23(1): 225–274
CrossRef
Pubmed
Google scholar
|
[34] |
Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol 2015; 33(1): 445–474
CrossRef
Pubmed
Google scholar
|
[35] |
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016; 17(9): 1025–1036
CrossRef
Pubmed
Google scholar
|
[36] |
Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003; 3(10): 781–790
CrossRef
Pubmed
Google scholar
|
[37] |
Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 2007; 7(9): 737–744
CrossRef
Pubmed
Google scholar
|
[38] |
Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, Hayashi N. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 2005; 43(6): 1013–1020
CrossRef
Pubmed
Google scholar
|
[39] |
Kamimura H, Yamagiwa S, Tsuchiya A, Takamura M, Matsuda Y, Ohkoshi S, Inoue M, Wakai T, Shirai Y, Nomoto M, Aoyagi Y. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol 2012; 56(2): 381–388
CrossRef
Pubmed
Google scholar
|
[40] |
Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, Liang H, Zhang Y, Shen T, Lu F. Failure recovery of circulating NKG2D(+)CD56(dim)NK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. OncoImmunology 2016; 5(1): e1048061
CrossRef
Pubmed
Google scholar
|
[41] |
Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50(3): 799–807
CrossRef
Pubmed
Google scholar
|
[42] |
Qu P, Huang X, Zhou X, Lü Z, Liu F, Shi Z, Lü L, Wu Y, Chen Y. Loss of CD155 expression predicts poor prognosis in hepatocellular carcinoma. Histopathology 2015; 66(5): 706–714
CrossRef
Pubmed
Google scholar
|
[43] |
Tanimine N, Ohdan H. Impact of multiplicity of functional KIR-HLA compound genotypes on hepatocellular carcinoma. OncoImmunology 2015; 4(1): e983765
CrossRef
Pubmed
Google scholar
|
[44] |
Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002; 20(1): 217–251
CrossRef
Pubmed
Google scholar
|
[45] |
Raulet DH, Vance RE, McMahon CW. Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001; 19(1): 291–330
CrossRef
Pubmed
Google scholar
|
[46] |
Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005; 436(7051): 709–713
CrossRef
Pubmed
Google scholar
|
[47] |
Cariani E, Pilli M, Zerbini A, Rota C, Olivani A, Zanelli P, Zanetti A, Trenti T, Ferrari C, Missale G. HLA and killer immunoglobulin-like receptor genes as outcome predictors of hepatitis C virus-related hepatocellular carcinoma. Clin Cancer Res 2013; 19(19): 5465–5473
CrossRef
Pubmed
Google scholar
|
[48] |
Tanimine N, Tanaka Y, Kobayashi T, Tashiro H, Miki D, Imamura M, Aikata H, Tanaka J, Chayama K, Ohdan H. Quantitative effect of natural killer-cell licensing on hepatocellular carcinoma recurrence after curative hepatectomy. Cancer Immunol Res 2014; 2(12): 1142–1147
CrossRef
Pubmed
Google scholar
|
[49] |
Singh R, Kaul R, Kaul A, Khan K. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol 2007; 13(12): 1770–1787
CrossRef
Pubmed
Google scholar
|
[50] |
Jamil KM, Khakoo SI. KIR/HLA interactions and pathogen immunity. J Biomed Biotechnol 2011; 2011: 298348
CrossRef
Pubmed
Google scholar
|
[51] |
Pan N, Jiang W, Sun H, Miao F, Qiu J, Jin H, Xu J, Shi Q, Xie W, Zhang J. KIR and HLA loci are associated with hepatocellular carcinoma development in patients with hepatitis B virus infection: a case-control study. PLoS One 2011; 6(10): e25682
CrossRef
Pubmed
Google scholar
|
[52] |
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 2006; 1(1): 23–61
CrossRef
Pubmed
Google scholar
|
[53] |
Shin EC, Sung PS, Park SH. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 2016; 16(8): 509–523
CrossRef
Pubmed
Google scholar
|
[54] |
Pan N, Qiu J, Sun H, Miao F, Shi Q, Xu J, Jiang W, Jin H, Xie W, He Y, Zhang J. Combination of human leukecyte antigen and killer cell immunoglulin-like antigen and killer cell influences the onset age of hepatocellular carcinoma in male patients with hepatitis B virus infenction. Clin Dev Immunol 2013; 2013: 874514
|
[55] |
De Re V, Caggiari L, De Zorzi M, Repetto O, Zignego AL, Izzo F, Tornesello ML, Buonaguro FM, Mangia A, Sansonno D, Racanelli V, De Vita S, Pioltelli P, Vaccher E, Berretta M, Mazzaro C, Libra M, Gini A, Zucchetto A, Cannizzaro R, De Paoli P. Genetic diversity of the KIR/HLA system and susceptibility to hepatitis C virus-related diseases. PLoS One 2015; 10(2): e0117420
CrossRef
Pubmed
Google scholar
|
[56] |
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331(6024): 1565–1570
CrossRef
Pubmed
Google scholar
|
[57] |
Chan SL, Mo FK, Wong CS, Chan CM, Leung LK, Hui EP, Ma BB, Chan AT, Mok TS, Yeo W. A study of circulating interleukin 10 in prognostication of unresectable hepatocellular carcinoma. Cancer 2012; 118(16): 3984–3992
CrossRef
Pubmed
Google scholar
|
[58] |
Chen Z, Xie B, Zhu Q, Xia Q, Jiang S, Cao R, Shi L, Qi D, Li X, Cai L. FGFR4 and TGF-β1 expression in hepatocellular carcinoma: correlation with clinicopathological features and prognosis. Int J Med Sci 2013; 10(13): 1868–1875
CrossRef
Pubmed
Google scholar
|
[59] |
Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol 2015; 62(6): 1420–1429
CrossRef
Pubmed
Google scholar
|
[60] |
Lin TH, Shao YY, Chan SY, Huang CY, Hsu CH, Cheng AL. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib. Clin Cancer Res 2015; 21(16): 3678–3684
CrossRef
Pubmed
Google scholar
|
[61] |
Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14(6): e218–e228
CrossRef
Pubmed
Google scholar
|
[62] |
Mouri H, Sakaguchi K, Sawayama T, Senoh T, Ohta T, Nishimura M, Fujiwara A, Terao M, Shiratori Y, Tsuji T. Suppressive effects of transforming growth factor-beta1 produced by hepatocellular carcinoma cell lines on interferon-γ production by peripheral blood mononuclear cells. Acta Med Okayama 2002; 56(6): 309–315
Pubmed
|
[63] |
Sui Q, Zhang J, Sun X, Zhang C, Han Q, Tian Z. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma. J Immunol 2014; 193(4): 2016–2023
CrossRef
Pubmed
Google scholar
|
[64] |
Xu D, Han Q, Hou Z, Zhang C, Zhang J. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol2016 Mar 21. [Epub ahead of print] doi: 10.1038/cmi.2015.113
CrossRef
Pubmed
Google scholar
|
[65] |
Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144(3): 512–527
CrossRef
Pubmed
Google scholar
|
[66] |
Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132(7): 2328–2339
CrossRef
Pubmed
Google scholar
|
[67] |
Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25(18): 2586–2593
CrossRef
Pubmed
Google scholar
|
[68] |
Langhans B, Alwan AW, Krämer B, Glässner A, Lutz P, Strassburg CP, Nattermann J, Spengler U. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J Hepatol 2015; 62(2): 398–404
CrossRef
Pubmed
Google scholar
|
[69] |
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 2015; 128: 95–139
CrossRef
Pubmed
Google scholar
|
[70] |
Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology 2015; 62(4): 1304–1312
CrossRef
Pubmed
Google scholar
|
[71] |
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8(9): 705–713
CrossRef
Pubmed
Google scholar
|
[72] |
Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 2009; 9(9): 609–617
CrossRef
Pubmed
Google scholar
|
[73] |
Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, Chouaib S. Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol 2015; 6: 482
CrossRef
Pubmed
Google scholar
|
[74] |
Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, Schivazappa S, Zibera C, Fagnoni FF, Ferrari C, Missale G. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 2006; 66(2): 1139–1146
CrossRef
Pubmed
Google scholar
|
[75] |
Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, Kagaya T, Yamashita T, Fushimi K, Kaneko S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013; 57(4): 1448–1457
CrossRef
Pubmed
Google scholar
|
[76] |
Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E, Cerioni S, Fagnoni F, Soliani P, Ferrari C, Missale G. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010; 138(5): 1931–1942
CrossRef
Pubmed
Google scholar
|
[77] |
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359(4): 378–390
CrossRef
Pubmed
Google scholar
|
[78] |
Tomuleasa C, Giannelli G, Cucuianu A, Aldea M, Paradiso A, Berindan-Neagoe I. Interplay between cancer cells, macrophages and natural killer cells may actually decide the outcome of therapy with sorafenib. Hepatology 2014; 60(1): 430
CrossRef
Pubmed
Google scholar
|
[79] |
Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 2010; 51(4): 1264–1273
CrossRef
Pubmed
Google scholar
|
[80] |
Zhang QB, Sun HC, Zhang KZ, Jia QA, Bu Y, Wang M, Chai ZT, Zhang QB, Wang WQ, Kong LQ, Zhu XD, Lu L, Wu WZ, Wang L, Tang ZY. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS One 2013; 8(2): e55945
CrossRef
Pubmed
Google scholar
|
[81] |
Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, Schiemann M, Weinmann A, Galle PR, Schuchmann M, Friess H, Otto G, Heikenwalder M, Protzer U. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology 2013; 57(6): 2358–2368
CrossRef
Pubmed
Google scholar
|
[82] |
Kamiya T, Chang YH, Campana D. Expanded and activated natural killer cells for immunotherapy of hepatocellular carcinoma. Cancer Immunol Res 2016; 4(7): 574–581
CrossRef
Pubmed
Google scholar
|
[83] |
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798–809
CrossRef
Pubmed
Google scholar
|
[84] |
Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7(1): 41–51
CrossRef
Pubmed
Google scholar
|
[85] |
Armeanu S, Krusch M, Baltz KM, Weiss TS, Smirnow I, Steinle A, Lauer UM, Bitzer M, Salih HR. Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res 2008; 14(11): 3520–3528
CrossRef
Pubmed
Google scholar
|
[86] |
Shi L, Lin H, Li G, Sun Y, Shen J, Xu J, Lin C, Yeh S, Cai X, Chang C. Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Lett 2016; 373(1): 45–56
CrossRef
Pubmed
Google scholar
|
[87] |
Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2015; 12(12): 681–700
CrossRef
Pubmed
Google scholar
|
[88] |
Takeda T, Watanabe M, Umeshita K, Goto M, Monden M. Long-term prognosis of hepatocellular carcinoma patients treated with adoptive immunotherapy. Gan To Kagaku Ryoho 2004; 31(11): 1646–1648 (in Japanese)
Pubmed
|
[89] |
Hsieh KH, Chang JS, Wu HL, Chu CT. Interleukin 2 and lymphokine-activated killer cells in the treatment of childhood primary hepatocellular carcinoma—a preliminary report. Asian Pac J Allergy Immunol 1987; 5(1): 13–16
Pubmed
|
[90] |
Huang ZM, Li W, Li S, Gao F, Zhou QM, Wu FM, He N, Pan CC, Xia JC, Wu PH, Zhao M. Cytokine-induced killer cells in combination with transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma patients. J Immunother 2013; 36(5): 287–293
CrossRef
Pubmed
Google scholar
|
[91] |
Xu L, Wang J, Kim Y, Shuang ZY, Zhang YJ, Lao XM, Li YQ, Chen MS, Pawlik TM, Xia JC, Li SP, Lau WY. A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. OncoImmunology 2015; 5(3): e1083671
CrossRef
Pubmed
Google scholar
|
[92] |
Li X, Dai D, Song X, Liu J, Zhu L, Xu W. A meta-analysis of cytokine-induced killer cells therapy in combination with minimally invasive treatment for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2014; 38(5): 583–591
CrossRef
Pubmed
Google scholar
|
[93] |
He G, Zheng C, Huo H, Zhang H, Zhu Z, Li J, Zhang H. TACE combined with dendritic cells and cytokine-induced killer cells in the treatment of hepatocellular carcinoma: a meta-analysis. Int Immunopharmacol 2016; 40: 436–442
CrossRef
Pubmed
Google scholar
|
[94] |
Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, Gwak GY, Kim KM, Kim YJ, Lee JW, Yoon JH. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015; 148(7): 1383–91.e6
CrossRef
Pubmed
Google scholar
|
[95] |
Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009; 69(9): 4010–4017
CrossRef
Pubmed
Google scholar
|
[96] |
Granzin M, Soltenborn S, Müller S, Kollet J, Berg M, Cerwenka A, Childs RW, Huppert V. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy 2015; 17(5): 621–632
CrossRef
Pubmed
Google scholar
|
[97] |
Lim O, Jung MY, Hwang YK, Shin EC. Present and future of allogeneic natural killer cell therapy. Front Immunol 2015; 6: 286
CrossRef
Pubmed
Google scholar
|
[98] |
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295(5562): 2097–2100
CrossRef
Pubmed
Google scholar
|
[99] |
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105(8): 3051–3057
CrossRef
Pubmed
Google scholar
|
[100] |
Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000; 356(9232): 802–807
CrossRef
Pubmed
Google scholar
|
[101] |
Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H, Ishiyama K, Zhou W, Tanaka Y, Asahara T. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 2004; 39(5): 1321–1331
CrossRef
Pubmed
Google scholar
|
[102] |
Nishida S, Levi DM, Tzakis AG. Liver natural killer cell inoculum for liver transplantation with hepatocellular carcinoma. Curr Opin Organ Transplant 2013; 18(6): 690–694
Pubmed
|
[103] |
Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, Tonn T. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother 2016; 65(4): 485–492
CrossRef
Pubmed
Google scholar
|
[104] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252–264
CrossRef
Pubmed
Google scholar
|
[105] |
Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 2014; 60(5): 1776–1782
CrossRef
Pubmed
Google scholar
|
[106] |
Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 2017; 139(1): 335–346.e3
CrossRef
Pubmed
Google scholar
|
[107] |
Korde N, Carlsten M, Lee MJ, Minter A, Tan E, Kwok M, Manasanch E, Bhutani M, Tageja N, Roschewski M, Zingone A, Costello R, Mulquin M, Zuchlinski D, Maric I, Calvo KR, Braylan R, Tembhare P, Yuan C, Stetler-Stevenson M, Trepel J, Childs R, Landgren O. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 2014; 99(6): e81–e83
CrossRef
Pubmed
Google scholar
|
[108] |
Carlsten M, Korde N, Kotecha R, Reger R, Bor S, Kazandjian D, Landgren O, Childs RW. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin Cancer Res 2016; 22(21): 5211–5222
CrossRef
Pubmed
Google scholar
|
[109] |
Felices M, Miller JS. Targeting KIR blockade in multiple myeloma: trouble in checkpoint paradise? Clin Cancer Res 2016; 22(21): 5161–5163
CrossRef
Pubmed
Google scholar
|
[110] |
Ruggeri L, Urbani E, André P, Mancusi A, Tosti A, Topini F, Bléry M, Animobono L, Romagné F, Wagtmann N, Velardi A. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 2016; 101(5): 626–633
CrossRef
Pubmed
Google scholar
|
[111] |
Chen A, Shen Y, Xia M, Xu L, Pan N, Yin Y, Miao F, Shen C, Xie W, Zhang J. Expression of the nonclassical HLA class I and MICA/B molecules in human hepatocellular carcinoma. Neoplasma 2011; 58(5): 371–376
CrossRef
Pubmed
Google scholar
|
[112] |
Casadevall A, Pirofski LA. A new synthesis for antibody-mediated immunity. Nat Immunol 2011; 13(1): 21–28
CrossRef
Pubmed
Google scholar
|
[113] |
Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003; 125(1): 89–97
CrossRef
Pubmed
Google scholar
|
[114] |
Nakano K, Orita T, Nezu J, Yoshino T, Ohizumi I, Sugimoto M, Furugaki K, Kinoshita Y, Ishiguro T, Hamakubo T, Kodama T, Aburatani H, Yamada-Okabe H, Tsuchiya M. Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2009; 378(2): 279–284
CrossRef
Pubmed
Google scholar
|
[115] |
Zhu AX, Gold PJ, El-Khoueiry AB, Abrams TA, Morikawa H, Ohishi N, Ohtomo T, Philip PA. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2013; 19(4): 920–928
CrossRef
Pubmed
Google scholar
|
[116] |
Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol 2016; 1441: 333–346
CrossRef
Pubmed
Google scholar
|
[117] |
Tay SS, Carol H, Biro M. TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Hum Vaccin Immunother 2016; 12(11): 2790–2796
CrossRef
Pubmed
Google scholar
|
[118] |
Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, Zhang B, Lenvik AJ, Panoskaltsis-Mortari A, Verneris MR, Tolar J, Cooley S, Weisdorf DJ, Blazar BR, Miller JS. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 2016; 22(14): 3440–3450
CrossRef
Pubmed
Google scholar
|
[119] |
Schmohl JU, Felices M, Taras E, Miller JS, Vallera DA. Enhanced ADCC and NK cell activation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol Ther 2016; 24(7): 1312–1322
CrossRef
Pubmed
Google scholar
|
[120] |
Mariani E, Meneghetti A, Tarozzi A, Cattini L, Facchini A. Interleukin-12 induces efficient lysis of natural killer-sensitive and natural killer-resistant human osteosarcoma cells: the synergistic effect of interleukin-2. Scand J Immunol 2000; 51(6): 618–625
CrossRef
Pubmed
Google scholar
|
[121] |
Jiang W, Zhang C, Tian Z, Zhang J. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function. Gene Ther 2013; 20(11): 1062–1069
CrossRef
Pubmed
Google scholar
|
[122] |
Jiang W, Zhang C, Tian Z, Zhang J. hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo. Immunobiology 2014; 219(7): 547–553
CrossRef
Pubmed
Google scholar
|
[123] |
Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 2013; 73(6): 1777–1786
CrossRef
Pubmed
Google scholar
|
[124] |
Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 2015; 6: 195
CrossRef
Pubmed
Google scholar
|
[125] |
Klingemann H. Are natural killer cells superior CAR drivers? OncoImmunology 2014; 3(4): e28147
CrossRef
Pubmed
Google scholar
|
[126] |
Esser R, Müller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schönfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS. NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 2012; 16(3): 569–581
CrossRef
Pubmed
Google scholar
|
[127] |
Boissel L, Betancur-Boissel M, Lu W, Krause DS, Van Etten RA, Wels WS, Klingemann H. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. OncoImmunology 2013; 2(10): e26527
CrossRef
Pubmed
Google scholar
|
[128] |
Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, Steinbach JP, Wels WS. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst 2016; 108(5): djv375
Pubmed
|
[129] |
Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, Kong J, Wang H, Yang S, Gu J, Li Z. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014; 20(24): 6418–6428
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |