Identification of differentially expressed miRNAs associated with chronic kidney disease–mineral bone disorder

Kyung Im Kim, Sohyun Jeong, Nayoung Han, Jung Mi Oh, Kook-Hwan Oh, In-Wha Kim

PDF(206 KB)
PDF(206 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 378-385. DOI: 10.1007/s11684-017-0541-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Identification of differentially expressed miRNAs associated with chronic kidney disease–mineral bone disorder

Author information +
History +

Abstract

The purpose of this study is to characterize a meta-signature of differentially expressed mRNA in chronic kidney disease (CKD) to predict putative microRNA (miRNA) in CKD–mineral bone disorder (CKD–MBD) and confirm the changes in these genes and miRNA expression under uremic conditions by using a cell culture system. PubMed searches using MeSH terms and keywords related to CKD, uremia, and mRNA arrays were conducted. Through a computational analysis, a meta-signature that characterizes the significant intersection of differentially expressed mRNA and expected miRNAs associated with CKD–MBD was determined. Additionally, changes in gene and miRNA expressions under uremic conditions were confirmed with human Saos-2 osteoblast-like cells. A statistically significant mRNA meta-signature of upregulated and downregulated mRNA levels was identified. Furthermore, miRNA expression profiles were inferred, and computational analyses were performed with the imputed microRNA regulation based on weighted ranked expression and putative microRNA targets (IMRE) method to identify miRNAs associated with CKD occurrence. TLR4 and miR-146b levels were significantly associated with CKD–MBD. TLR4 levels were significantly downregulated, whereas pri-miR-146b and miR-146b were upregulated in the presence of uremic toxins in human Saos-2 osteoblast-like cells. Differentially expressed miRNAs associated with CKD-MBD were identified through a computational analysis, and changes in gene and miRNA expressions were confirmed with an in vitro cell culture system.

Keywords

chronic kidney disease / microRNA / mineral bone disorder / uremia

Cite this article

Download citation ▾
Kyung Im Kim, Sohyun Jeong, Nayoung Han, Jung Mi Oh, Kook-Hwan Oh, In-Wha Kim. Identification of differentially expressed miRNAs associated with chronic kidney disease–mineral bone disorder. Front. Med., 2017, 11(3): 378‒385 https://doi.org/10.1007/s11684-017-0541-8

References

[1]
Meyer TW, Hostetter TH. Uremia. N Engl J Med 2007; 357(13): 1316–1325
CrossRef Pubmed Google scholar
[2]
Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A; European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012; 23(7): 1258–1270
CrossRef Pubmed Google scholar
[3]
Cibulka R, Racek J. Metabolic disorders in patients with chronic kidney failure. Physiol Res 2007; 56(6): 697–705
Pubmed
[4]
Lanza D, Perna AF, Oliva A, Vanholder R, Pletinck A, Guastafierro S, Di Nunzio A, Vigorito C, Capasso G, Jankowski V, Jankowski J, Ingrosso D. Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015; 10(1): e0116468
CrossRef Pubmed Google scholar
[5]
Meijers BK, Claes K, Bammens B, de Loor H, Viaene L, Verbeke K, Kuypers D, Vanrenterghem Y, Evenepoel P. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol 2010; 5(7): 1182–1189
CrossRef Pubmed Google scholar
[6]
Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G; Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006; 69(11): 1945–1953
CrossRef Pubmed Google scholar
[7]
Menon V, Gul A, Sarnak MJ. Cardiovascular risk factors in chronic kidney disease. Kidney Int 2005; 68(4): 1413–1418
CrossRef Pubmed Google scholar
[8]
Hruska K, Mathew S, Lund R, Fang Y, Sugatani T. Cardiovascular risk factors in chronic kidney disease: does phosphate qualify? Kidney Int 2011; 79(S121): S9–S13 PMID: 26746860 
CrossRef Google scholar
[9]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–297
CrossRef Pubmed Google scholar
[10]
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653–4662
CrossRef Pubmed Google scholar
[11]
O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10(2): 111–122
CrossRef Pubmed Google scholar
[12]
Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013; 253(1): 167–184
CrossRef Pubmed Google scholar
[13]
Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res 2011; 157(4): 216–225
CrossRef Pubmed Google scholar
[14]
Schöler N, Langer C, Döhner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 2010; 38(12): 1126–1130
CrossRef Pubmed Google scholar
[15]
Isakova T, Gutiérrez OM, Patel NM, Andress DL, Wolf M, Levin A. Vitamin D deficiency, inflammation, and albuminuria in chronic kidney disease: complex interactions. J Ren Nutr 2011; 21(4): 295–302
CrossRef Pubmed Google scholar
[16]
Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 2014; 25(8): 1760–1773
CrossRef Pubmed Google scholar
[17]
Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant 2011; 26(11): 3794–3802
CrossRef Pubmed Google scholar
[18]
Beltrami C, Clayton A, Phillips AO, Fraser DJ, Bowen T. Analysis of urinary microRNAs in chronic kidney disease. Biochem Soc Trans 2012; 40(4): 875–879
CrossRef Pubmed Google scholar
[19]
Feichtinger J, McFarlane RJ, Larcombe LD. CancerMA: a web-based tool for automatic meta-analysis of public cancer microarray data. Database (Oxford) 2012; 2012: bas055
[20]
Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 2008; 5(9): e184
CrossRef Pubmed Google scholar
[21]
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5(10): R80
CrossRef Pubmed Google scholar
[22]
McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics 2010; 11(2): 242–253
CrossRef Pubmed Google scholar
[23]
Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C, Lingen MW, Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA. Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLOS Comput Biol 2010; 6(4): e1000730
CrossRef Pubmed Google scholar
[24]
Scheid S, Spang R. twilight; a Bioconductor package for estimating the local false discovery rate. Bioinformatics 2005; 21(12): 2921–2922
CrossRef Pubmed Google scholar
[25]
Bauer O, Sharir A, Kimura A, Hantisteanu S, Takeda S, Groner Y. Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol Cell Biol 2015; 35(7): 1097–1109
CrossRef Pubmed Google scholar
[26]
Kim HJ, Park J, Lee SK, Kim KR, Park KK, Chung WY. Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer. J Pathol 2015; 237(4): 520–531
CrossRef Pubmed Google scholar
[27]
Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R, Gautvik KM. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone 2010; 46(3): 604–612
CrossRef Pubmed Google scholar
[28]
Niu G, Li B, Sun J, Sun L. miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif 2015; 48(3): 348–355
CrossRef Pubmed Google scholar
[29]
Huang RL, Yuan Y, Zou GM, Liu G, Tu J, Li Q. LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-kB and BMP/Smad signaling. Stem Cells Dev 2014; 23(3): 277–289160;
CrossRef Pubmed Google scholar
[30]
Ando M, Shibuya A, Tsuchiya K, Akiba T, Nitta K. Reduced capacity of mononuclear cells to synthesize cytokines against an inflammatory stimulus in uremic patients. Nephron Clin Pract 2006; 104(3): c113–c119
CrossRef Pubmed Google scholar
[31]
Wang ZS, Xu DM, Guan GJ, Cui MY, Wei Y, Tang LJ, Jia XY, Li WB. Clinical significance of toll-like receptor 4 expression on the surface of peripheral blood mononuclear cells in uremic patients. Natl Med J China (Zhonghua Yi Xue Za Zhi) 2010; 90(34): 2389–2391 (in Chinese)
Pubmed
[32]
He X, Wang H, Jin T, Xu Y, Mei L, Yang J. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS One 2016; 11(3): e0149876
CrossRef Pubmed Google scholar
[33]
Herzmann N, Salamon A, Fiedler T, Peters K. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp Cell Res 2017; 350(1): 115–122
CrossRef Pubmed Google scholar
[34]
Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103(33): 12481–12486
CrossRef Pubmed Google scholar
[35]
Sato T, Liu X, Nelson A, Nakanishi M, Kanaji N, Wang X, Kim M, Li Y, Sun J, Michalski J, Patil A, Basma H, Holz O, Magnussen H, Rennard SI. Reduced miR-146a increases prostaglandin Ein chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med 2010; 182(8): 1020–1029
CrossRef Pubmed Google scholar
[36]
Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017–1034
CrossRef Pubmed Google scholar
[37]
Larner-Svensson HM, Williams AE, Tsitsiou E, Perry MM, Jiang X, Chung KF, Lindsay MA. Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle. Respir Res 2010; 11(1): 68
CrossRef Pubmed Google scholar
[38]
Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 2008; 180(8): 5689–5698
CrossRef Pubmed Google scholar
[39]
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA 2013; 110(28): 11499–11504
CrossRef Pubmed Google scholar
[40]
Asai Y, Hirokawa Y, Niwa K, Ogawa T. Osteoclast differentiation by human osteoblastic cell line SaOS-2 primed with bacterial lipid A. FEMS Immunol Med Microbiol 2003; 38(1): 71–79
CrossRef Pubmed Google scholar
[41]
Fetahu IS, Tennakoon S, Lines KE, Gröschel C, Aggarwal A, Mesteri I, Baumgartner-Parzer S, Mader RM, Thakker RV, Kállay E. miR-135b- and miR-146b-dependent silencing of calcium-sensing receptor expression in colorectal tumors. Int J Cancer 2016; 138(1): 137–145
CrossRef Pubmed Google scholar
[42]
Bover J, Aguilar A, Baas J, Reyes J, Lloret MJ, Farré N, Olaya M, Canal C, Marco H, Andrés E, Trinidad P, Ballarin J. Calcimimetics in the chronic kidney disease-mineral and bone disorder. Int J Artif Organs 2009; 32(2): 108–121
Pubmed
[43]
Oishi T, Uezumi A, Kanaji A, Yamamoto N, Yamaguchi A, Yamada H, Tsuchida K. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells. PLoS One 2013; 8(2): e56641
CrossRef Pubmed Google scholar
[44]
Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, Tranaeus A, Stenvinkel P, Lindholm B. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008; 3(5): 1526–1533
CrossRef Pubmed Google scholar

Acknowledgements

This research was supported by the Basic Science Research Program (No. 2014R1A1A2055734) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and the Ministry of Science, ICT and Future Planning (No. 2014M3C1B3064644).

Compliance with ethics guidelines

Kyung Im Kim, Sohyun Jeong, Nayoung Han, Jung Mi Oh, Kook-Hwan Oh, and In-Wha Kim declare that they have no conflict of interest. This manuscript does not contain any studies with human subjects performed by any of the authors.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11684-017-0541-8 and is accessible to authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(206 KB)

Accesses

Citations

Detail

Sections
Recommended

/