The antibiotic resistome: gene flow in environments, animals and human beings
Yongfei Hu, George F. Gao, Baoli Zhu
The antibiotic resistome: gene flow in environments, animals and human beings
The antibiotic resistance is natural in bacteria and predates the human use of antibiotics. Numerous antibiotic resistance genes (ARGs) have been discovered to confer resistance to a wide range of antibiotics. The ARGs in natural environments are highly integrated and tightly regulated in specific bacterial metabolic networks. However, the antibiotic selection pressure conferred by the use of antibiotics in both human medicine and agriculture practice leads to a significant increase of antibiotic resistance and a steady accumulation of ARGs in bacteria. In this review, we summarized, with an emphasis on an ecological point of view, the important research progress regarding the collective ARGs (antibiotic resistome) in bacterial communities of natural environments, human and animals, i.e., in the one health settings. We propose that the resistance gene flow in nature is “from the natural environments” and “to the natural environments”; human and animals, as intermediate recipients and disseminators, contribute greatly to such a resistance gene “circulation.”
antibiotic resistance / resistome / microbiome / gene flow
[1] |
Rossolini GM, Arena F, Pecile P , Pollini S . Update on the antibiotic resistance crisis. Curr Opin Pharmacol 2014; 18: 56–60
CrossRef
Google scholar
|
[2] |
O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 2014; doi:10.1038/510015a
CrossRef
Google scholar
|
[3] |
Laxminarayan R, Amabile-Cuevas CF, Cars O , Evans T , Heymann DL , Hoffman S , Holmes A , Mendelson M , Sridhar D , Woolhouse M , Røttingen JA . UN High-Level Meeting on antimicrobials—what do we need? Lancet 2016; 388(10041): 218–220
CrossRef
Google scholar
|
[4] |
Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146(3713): 837
CrossRef
Google scholar
|
[5] |
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36(6): 697–705
CrossRef
Google scholar
|
[6] |
D’Costa VM, King CE, Kalan L , Morar M , Sung WWL , Schwarz C , Froese D , Zazula G , Calmels F , Debruyne R , Golding GB , Poinar HN , Wright GD . Antibiotic resistance is ancient. Nature 2011; 477(7365): 457–461
CrossRef
Google scholar
|
[7] |
Riesenfeld CS, Goodman RM, Handelsman J . Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 2004; 6(9): 981–989
CrossRef
Google scholar
|
[8] |
Sommer MOA, Dantas G, Church GM . Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009; 325(5944): 1128–1131
CrossRef
Google scholar
|
[9] |
D’Costa VM, McGrann KM, Hughes DW , Wright GD . Sampling the antibiotic resistome. Science 2006; 311(5759): 374–377
CrossRef
Google scholar
|
[10] |
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 2007; 5(3): 175–186
CrossRef
Google scholar
|
[11] |
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417–433
CrossRef
Google scholar
|
[12] |
Martinez JL. Antibiotics and antibiotic resistance genes in natural environments. Science 2008; 321(5887): 365–367
CrossRef
Google scholar
|
[13] |
Allen HK, Donato J, Wang HH , Cloud-Hansen KA , Davies J , Handelsman J . Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8(4): 251–259
CrossRef
Google scholar
|
[14] |
Dantas G, Sommer MO, Oluwasegun RD , Church GM . Bacteria subsisting on antibiotics. Science 2008; 320(5872): 100–103
CrossRef
Google scholar
|
[15] |
Forsberg KJ, Reyes A, Wang B , Selleck EM , Sommer MO , Dantas G . The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337(6098): 1107–1111
CrossRef
Google scholar
|
[16] |
Baquero F, Martinez JL, Canton R . Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 2008; 19(3): 260–265
CrossRef
Google scholar
|
[17] |
Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 2006; 8(7): 1137–1144
CrossRef
Google scholar
|
[18] |
Zhang XX, Zhang T, Fang HH . Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 2009; 82(3): 397–414
CrossRef
Google scholar
|
[19] |
Hatosy SM, Martiny AC. The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 2015; 81(21): 7593–7599
CrossRef
Google scholar
|
[20] |
Yap MN. The double life of antibiotics. Mo Med 2013; 110(4): 320–324
|
[21] |
Zhu YG, Johnson TA, Su JQ , Qiao M, Guo GX, Stedtfeld RD , Hashsham SA , Tiedje JM . Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 2013; 110(9): 3435–3440
CrossRef
Google scholar
|
[22] |
Schmidt AS, Bruun MS, Dalsgaard I , Larsen JL . Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 2001; 67(12): 5675–5682
CrossRef
Google scholar
|
[23] |
Aarestrup FM. Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb Drug Resist 1995; 1(3): 255–257
CrossRef
Google scholar
|
[24] |
Cheng W, Chen H, Su C , Yan S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 2013; 61: 1–7
CrossRef
Google scholar
|
[25] |
Ibrahim DR, Dodd CE, Stekel DJ , Ramsden SJ , Hobman JL . Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiol Ecol 2016; 92(4): fiw013
CrossRef
Google scholar
|
[26] |
Kazimierczak KA, Scott KP, Kelly D , Aminov RI . Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 2009; 75(6): 1717–1722
CrossRef
Google scholar
|
[27] |
Xiao L, Estelle J, Kiilerich P , Ramayo-Caldas Y , Xia Z, Feng Q, Liang S , Pedersen AØ , Kjeldsen NJ , Liu C, Maguin E, Doré J , Pons N, Le Chatelier E, Prifti E , Li J, Jia H, Liu X , Xu X, Ehrlich SD, Madsen L , Kristiansen K , Rogel-Gaillard C , Wang J. A reference gene catalogue of the pig gut microbiome. Nat Microbiol 2016; 1: 16161
CrossRef
Google scholar
|
[28] |
Anderson ES. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol 1968; 22(1): 131–180
CrossRef
Google scholar
|
[29] |
Weinstein L, Goldfield M, Chang TW . Infections occurring during chemotherapy; a study of their frequency, type and predisposing factors. N Engl J Med 1954; 251(7): 247–255
CrossRef
Google scholar
|
[30] |
Salyers AA, Gupta A, Wang Y . Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 2004; 12(9): 412–416
CrossRef
Google scholar
|
[31] |
Hu Y, Yang X, Qin J , Lu N, Cheng G, Wu N , Pan Y, Li J, Zhu L , Wang X, Meng Z, Zhao F , Liu D, Ma J, Qin N , Xiang C , Xiao Y, Li L, Yang H , Wang J, Yang R, Gao GF , Wang J, Zhu B. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 2013; 4: 2151
CrossRef
Google scholar
|
[32] |
Hu Y, Yang X, Lu N , Zhu B. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 2014; 5(2): 245–249
CrossRef
Google scholar
|
[33] |
Hu Y, Zhu B. The human gut antibiotic resistome in the metagenomic era: progress and perspectives. Infect Dis Transl Med 2016; 2(1): 41–47
|
[34] |
Martinez JL, Coque TM, Baquero F . What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 2015; 13(2): 116–123
CrossRef
Google scholar
|
[35] |
Liu YY, Wang Y, Walsh TR , Yi LX, Zhang R, Spencer J , Doi Y, Tian G, Dong B , Huang X , Yu LF, Gu D, Ren H , Chen X, Lv L, He D , Zhou H, Liang Z, Liu JH , Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16(2): 161–168
CrossRef
Google scholar
|
[36] |
Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013; 303(6–7): 287–292
CrossRef
Google scholar
|
[37] |
Martinez JL, Baquero F, Andersson DI . Predicting antibiotic resistance. Nat Rev Microbiol 2007; 5(12): 958–965
CrossRef
Google scholar
|
[38] |
Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 2005; 3(9): 679–687
CrossRef
Google scholar
|
[39] |
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008; 153(S1): S347–S357
CrossRef
Google scholar
|
[40] |
Rice LB. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother 1998; 42(8): 1871–1877
|
[41] |
Rowe-Magnus DA, Mazel D. The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol 2002; 292(2): 115–125
CrossRef
Google scholar
|
[42] |
Hu Y, Zhu Y, Ma Y , Liu F, Lu N, Yang X , Luan C, Yi Y, Zhu B . Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother 2015; 59(2): 1152–1161
CrossRef
Google scholar
|
[43] |
Dobrindt U, Hochhut B, Hentschel U , Hacker J . Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2004; 2(5): 414–424
CrossRef
Google scholar
|
[44] |
Fournier PE, Vallenet D, Barbe V , Audic S , Ogata H , Poirel L , Richet H , Robert C , Mangenot S , Abergel C , Nordmann P , Weissenbach J , Raoult D , Claverie JM . Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2(1): 62–72
CrossRef
Google scholar
|
[45] |
Hu Y, Yang X, Li J , Lv N, Liu F, Wu J , Lin IYC , Wu N, Weimer BC, Gao GF , Liu Y, Zhu B. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 2016; 82(22): 6672–6681
CrossRef
Google scholar
|
[46] |
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3(9): 711–721
CrossRef
Google scholar
|
[47] |
Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 2011; 14(5): 615–623
CrossRef
Google scholar
|
[48] |
Forsberg KJ, Patel S, Gibson MK , Lauber CL , Knight R , Fierer N , Dantas G . Bacterial phylogeny structures soil resistomes across habitats. Nature 2014; 509(7502): 612–616
CrossRef
Google scholar
|
[49] |
Smillie CS, Smith MB, Friedman J , Cordero OX , David LA , Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011; 480(7376): 241–244
CrossRef
Google scholar
|
[50] |
Gibson MK, Forsberg KJ, Dantas G . Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 2015; 9(1): 207–216
CrossRef
Google scholar
|
[51] |
Smith HW. Transfer of antibiotic resistance from animal and human strains of Escherichia coli to resident E. coli in the alimentary tract of man. Vet Rec 1969; 85(2): 31–33
CrossRef
Google scholar
|
[52] |
Rodriguez-Mozaz S, Chamorro S, Marti E , Huerta B , Gros M, Sànchez-Melsió A, Borrego CM , Barceló D , Balcázar JL . Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 2015; 69: 234–242
CrossRef
Google scholar
|
[53] |
Korzeniewska E, Korzeniewska A, Harnisz M . Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf 2013; 91: 96–102
CrossRef
Google scholar
|
[54] |
Gotz A, Smalla K. Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 1997; 63(5): 1980–1986
|
[55] |
Winokur PL, Vonstein DL, Hoffman LJ , Uhlenhopp EK , Doern GV . Evidence for transfer of CMY-2 AmpC β-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother 2001; 45(10): 2716–2722
CrossRef
Google scholar
|
[56] |
Moubareck C, Bourgeois N, Courvalin P , Doucet-Populaire F . Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother 2003; 47(9): 2993–2996
CrossRef
Google scholar
|
[57] |
No author listed. Antimicrobial resistance: implications for the food system. An expert report, funded by the IFT Foundation. Compr Rev Food Sci F 2006; 5(3): 71–137
CrossRef
Google scholar
|
[58] |
Hu Y, Liu F, Lin IY , Gao GF, Zhu B. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16(2): 146–147
CrossRef
Google scholar
|
[59] |
Graham DW, Collignon P, Davies J , Larsson DG , Snape J . Underappreciated role of regionally poor water quality on globally increasing antibiotic resistance. Environ Sci Technol 2014; 48(20): 11746–11747
CrossRef
Google scholar
|
[60] |
Arnold KE, Williams NJ, Bennett M . ‘Disperse abroad in the land’: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 2016; 12(8): 20160137
CrossRef
Google scholar
|
[61] |
Vittecoq M, Godreuil S, Prugnolle F , Durand P , Brazier L , Renaud N , Arnal A , Aberkane S , Jean-Pierre H , Gauthier-Clerc M , Thomas F , Renaud F . Antimicrobial resistance in wildlife. J Appl Ecol 2016; 53(2): 519–529
CrossRef
Google scholar
|
[62] |
Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 2009; 157(11): 2893–2902
CrossRef
Google scholar
|
[63] |
Pruden A, Pei RT, Storteboom H , Carlson KH . Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 2006; 40(23): 7445–7450
CrossRef
Google scholar
|
[64] |
Laxminarayan R, Duse A, Wattal C , Zaidi AK , Wertheim HF , Sumpradit N , Vlieghe E , Hara GL , Gould IM , Goossens H , Greko C , So AD, Bigdeli M, Tomson G , Woodhouse W , Ombaka E , Peralta AQ , Qamar FN , Mir F, Kariuki S, Bhutta ZA , Coates A , Bergstrom R , Wright GD , Brown ED , Cars O. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057–1098
CrossRef
Google scholar
|
[65] |
Nathan C, Cars O. Antibiotic resistance-problems, progress, and prospects. N Engl J Med 2014; 371(19): 1761–1763
CrossRef
Google scholar
|
[66] |
McCullough AR, Parekh S, Rathbone J , Del Mar CB , Hoffmann TC . A systematic review of the public’s knowledge and beliefs about antibiotic resistance. J Antimicrob Chemother 2016; 71(1): 27–33
CrossRef
Google scholar
|
/
〈 | 〉 |