The antibiotic resistome: gene flow in environments, animals and human beings

Yongfei Hu , George F. Gao , Baoli Zhu

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 161 -168.

PDF (173KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 161 -168. DOI: 10.1007/s11684-017-0531-x
REVIEW
REVIEW

The antibiotic resistome: gene flow in environments, animals and human beings

Author information +
History +
PDF (173KB)

Abstract

The antibiotic resistance is natural in bacteria and predates the human use of antibiotics. Numerous antibiotic resistance genes (ARGs) have been discovered to confer resistance to a wide range of antibiotics. The ARGs in natural environments are highly integrated and tightly regulated in specific bacterial metabolic networks. However, the antibiotic selection pressure conferred by the use of antibiotics in both human medicine and agriculture practice leads to a significant increase of antibiotic resistance and a steady accumulation of ARGs in bacteria. In this review, we summarized, with an emphasis on an ecological point of view, the important research progress regarding the collective ARGs (antibiotic resistome) in bacterial communities of natural environments, human and animals, i.e., in the one health settings. We propose that the resistance gene flow in nature is “from the natural environments” and “to the natural environments”; human and animals, as intermediate recipients and disseminators, contribute greatly to such a resistance gene “circulation.”

Keywords

antibiotic resistance / resistome / microbiome / gene flow

Cite this article

Download citation ▾
Yongfei Hu, George F. Gao, Baoli Zhu. The antibiotic resistome: gene flow in environments, animals and human beings. Front. Med., 2017, 11(2): 161-168 DOI:10.1007/s11684-017-0531-x

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The introduction of antibiotics to clinical therapy is a great advance in human medicine, since Fleming’s great discovery. However, the successful use of antibiotics is gradually compromised by the development of antibiotic resistance []. It is estimated that the antibiotic resistance will lead to 10 million annual deaths by 2050 and thus a reduction of 2% to 3.5% in Gross Domestic Product (GDP) []. Currently, the problem of antibiotic resistance is receiving unprecedented attention all over the world. In the Communique of G20 Summit held in Hangzhou, China, in 2016, the problem of antibiotic resistance was listed as one of the five factors that greatly impact world economy. Very recently, the UN General Assembly High-Level Meeting of Heads of State agrees on a global collaboration to cope with antibiotic resistance problems []. The antibiotic resistance has a long history that is comparable to the discovery of antibiotics, and the resistance even appeared prior to the clinical use of the drugs []. After the introduction of antibiotics in clinical and agricultural settings, bacteria have evolved mechanisms to resist nearly all antibiotics discovered so far. Not only that, the worst thing is the continuous emergence of superbugs with multi-drug resistance, leading us to stand on the edge of a post-antibiotic era []. It is known that the antibiotic resistance is mediated by the antibiotic resistance genes (ARGs). In fact, ARGs have been verified to be ancient in the natural environments, for example, even in 30 000-year old frozen sediments []. In recent years, ARGs have been characterized throughout microbiomes of natural and host-associated environments by metagenomic function-based or sequence-based strategies [,]. Accordingly, a new term, antibiotic resistome, has been coined to refer to the collection of ARGs in a specific bacteria or ecological niche [,]. The antibiotic resistance is therefore not only a public health concern but also an ecological issue with respect to environment, animal, and human. In this review, we summarize the recent research progress about the antibiotic resistome in microbiomes of natural environments, human and animal guts with respect to the reservoirs of antibiotic resistome (representative studies were summarized in Table 1), the intrinsic and mobile resistome, the forces shaping the resistome and the spread and dissemination pathway of ARGs.

The reservoirs of antibiotic resistome

It is generally accepted that the ARGs are as old as the natural-product antibiotics in bacteria, for the simple reason that the antibiotic producers should equip themselves with resistance genes to protect themselves []. As the antibiotic biosynthetic pathways emerged several hundred million years ago, the ARGs probably had circulated for a long time in bacterial communities before their “flourishing” in recent decades. The natural environments, therefore, is reasonably regarded as the first reservoir of ARGs [,]. This is indeed the case. The first comprehensive study targeting environmental resistome was published in 2006 []. In this study, a total of 480 spore-forming bacteria were isolated from soil samples located in different sites; these strains were screened against 21 antibiotics encompassing all major bacterial targets. It is surprising that each isolate was resistant to seven or eight antibiotics on average, even resistant to the synthetic antibiotic trimethoprim and the new lipopeptide daptomycin. Another study further demonstrated that antibiotics can serve as a sole carbon source to support the growth of soil bacteria, and many of the phylogenetically diverse bacteria are found closely related to human pathogens and resistant to multiple antibiotics []. Soil bacteria have also been found to share the same (perfect nucleotide identity) ARGs with diverse human pathogens []. Of 110 ARGs identified, 18 showed perfect amino acid identity to those in GenBank, and 55 of the 110 genes wereb-lactamase encoding genes. In addition to terrestrial environment, aquatic environment is another container for ARGs. Unlike soil, some water environments that are easily accessible to human may be more affected by anthropogenic activities. For example, due to the containing of human and animal pathogens and industrial pollutions like antibiotics and disinfectants, sewage wastewater released constantly in human activities contributes greatly to the spread and accumulation of ARGs in water environment []. In addition, the heavy use of prophylactic antibiotics in aquiculture, for example, fish rearing results in the frequent occurrence of antibiotic-resistant bacteria and a rapid dissemination of the antibiotic resistance determinants in water environment []. The ARGs have been widely explored in water environments including sewage, hospital and animal production wastewaters, ground water, surface water, drinking water, and so on, which has been summarized elsewhere []. The most frequently encountered ARGs in these environments aretet genes encoding resistance to tetracyclines, aac, aph, and ant genes to aminoglycosides, and a variety of bla genes to b-lactams. Besides, the marine environment is possibly another ARG reservoir. In the work of Hatosya et al. [], they found the marine environments host a diversity of ARGs conferring resistance to ampicillin, tetracycline, nitrofurantoin, and sulfadimethoxine, and nearly 30% of these genes are known ARGs, while the majority are new resistance genes that have never been classified. Taken together, these facts suggest the great potential of environmental bacteria as a reservoir of antibiotic resistome that will greatly influence the human pathogens.

Compared with natural environment, host-associated environment especially the gut microbiota is undoubtedly a more complex antibiotic resistome reservoir because of the more frequent exposure to antibiotics of the gut bacteria. One of the host-associated resistome reservoirs of particular importance is the gut bacteria of farm animals. It is estimated that, in the United States, nearly 80% of antibiotics were used in animals for growth promotion, disease prophylaxis and treatment purpose []. It is therefore, not unexpected, that the animals and their related environments constitute a huge reservoir of ARGs. For example, in farm samples including manure and compost, Zhuet al. detected 149 unique ARGs using quantitative PCR, the top 63 ARGs of which were enriched 192-fold (median) up to 28 000-fold (maximum) compared with respective control samples []. The three major resistance mechanisms detected in these farms are efflux pumps, antibiotic deactivation, and cellular protection. There are many other studies showing an increased number of resistant bacteria in animal farming environments [], and the ARGs have even been frequently found in a small fecal metagenomic library from organic pigs that were reared in an antibiotic-free environment []. In a very recent study, the reference gene catalog of pig gut microbiome was established []. The ARG analysis indicated that ARGs encoding resistance to bacitracin, cephalosporin, macrolide, streptogramin B and tetracycline are prevalent among pigs from different countries, and the country-specific farm systems and antibiotic use strategies obviously affect the pig gut antibiotic resistome.

The effect of antibiotics on the alteration of the human gut bacteria as well as the resulting antibiotic resistance has long been recognized [,]. However, systematic investigation of the human gut antibiotic resistome just began in the last decade, which can be largely attributed to the limitation of the research methods. The concept of ARG reservoir in human intestinal bacteria was posed in 2004 []. It hypothesized that the human intestinal bacteria harbor numerous ARGs; at most time, these ARGs are exchanged mainly among the commensal bacteria in human gut; there will be a problem once the commensals cause post-surgical infections. Another aspect, however, is that some bacteria are merely passing through the gut, but have the chance to become ARG-carriers due to the horizontal gene transfer (HGT) that takes place in the gut flora. These new ARG-carriers may circulate in human microbiome or disseminate to other environments. This ARG reservoir hypothesis was subsequently supported by many efforts, especially through metagenomic strategies, made on exploring the resistome in human gut microbiome. We performed the first large-scale metagenome-wide analysis of human gut antibiotic resistome from 162 individuals of three different populations (Denmark, Spain, and China) []. The Chinese individuals were found to harbor the most abundance of ARGs among these three countries. In each population, the tetracycline resistance genetet accounted for the highest ratio of total ARGs, and interestingly, the tetracyclines were the most heavily used in animals, suggesting that the antibiotics use for animals potentially impacts the human gut antibiotic resistome []. A detailed summary of the research findings on the human gut antibiotic resistome in the metagenomic era, including the ARG databases used for annotation, the potential problems and limitations, etc. can be found in our previous review [].

The intrinsic and mobile resistome

As the antibiotic resistance can be classified as intrinsic and acquired resistance, the antibiotic resistome is accordingly divided into intrinsic and mobile resistome. Though numerous ARGs are found among natural and host-associated environments, the real risk of these ARGs has been considered to be over-estimated []. The mobile ARGs that can be disseminated through HGT among bacteria are generally considered to have a higher risk for the transfer of antibiotic resistance. For example, resistance to polymyxin due to chromosomal mutation has long been recognized, however, only the recent discovery of plasmid-encoded resistance mechanism (MCR-1) arouses worldwide attention []. Certainly, relative low risk rank does not mean that the intrinsic ARGs are less important. In fact, the intrinsic ARGs are not merely antibiotic determinants conferring resistance phenotype, but are involved in a complex metabolic network closely related to bacterial physiology []. More importantly, there is a possibility that an intrinsic ARG, in certain stage of evolution, can be captured by mobile genetic elements (MGEs) and becomes a mobile ARG that can be easily spread. Understanding the intrinsic resistome will therefore contribute to the prediction of the emergence and evolution of antibiotic resistance in the future []. Unlike intrinsic ARGs that are relatively stationary, the mobile ARGs are highly transferable. The transfer of the mobile ARGs is largely mediated by the MGEs that are regarded as the major contributors to bacterial genome innovation and evolution []. These ARG-carrying MGEs include plasmids [], transposons [], integrons [], integrative conjugative elements [], genomic islands, and phages []. A special type of genomic island with different ARGs clustered together is called resistance islands (RIs). AbaR1 fromAcinetobacter baumannii is the largest RI identified to date, containing 45 mobile ARGs of different bacteria origins clustered within an 86-kb region [44]. However, the whole profile of the mobile resistome in bacteria and their interaction among bacteria is not very clear.

Forces shaping the antibiotic resistome

From a macro perspective, phylogeny, ecology, and functional barriers are the major factors impacting HGT []. As for the ARGs, both the roles of phylogeny and ecology in shaping the antibiotic resistome have been characterized. Forsberget al. constructed metagenomic libraries from 18 soil samples and performed functional selection of the libraries using 18 antibiotics for resistance []. A total of 2895 ARGs were discovered; these ARGs represented all major antibiotic resistance mechanisms. The composition of the resistome was found to be correlated with the soil microbial phylogenetic and taxonomic structure, suggesting that the bacterial community composition (bacterial phylogeny) determined the soil resistome content. While, by exploring the recent gene transfer among 2235 bacterial genomes, Smillieet al. characterized 10 770 unique, recently transferred genes (ARGs are included) []. They observed that the exchange of the transferred genes is more frequent among ecologically similar environments. The human-associated bacteria displayed 25-fold more HGT than non-human isolates of different environmental origins. Therefore, an ecology driven gene exchange network in bacteria was proposed. In another study, a new annotation method based on protein families and associated profile hidden Markov models (HMMs) was developed []. Using this method, Gibson et al. analyzed the resistome in more than 600 bacterial genomes and found that the environmental and human-associated microbial communities harbor distinct antibiotic resistome. They also suggested that the antibiotic resistome is clustered by ecology.

The resistance gene dissemination

Another important biological force implicated in the spread of antibiotic resistome among different environments is wild animal. The use of antibiotics in human and farm animals to a large degree leads to the contamination of natural environments with resistant human pathogens and antimicrobials, for example, by physical forces like wind and river flow []. Therefore, the wildlife in proximity to the contaminated ecosystems is increasingly exposed to resistant bacteria and ARGs. Once the wild animals acquired ARGs, there is a potential for them, especially the highly mobile species, to spread the ARGs around the world. For example, wild birds, particularly waterfowl and birds of prey, can travel a long distance and inhabit a wide range of environments, with a high potential to disseminate ARGs in their life activities []. The investigation of the antibiotic resistome in wildlife, culture-dependent or-independent, has been performed in many wild animals. Very recently, Vittecoqet al. reviewed more than 210 studies concerning antibiotic resistance in wildlife []. They concluded that a strong link exists between human activities and the carriage of antibiotic resistant bacteria in wildlife; omnivorous, anthropophilic, and carnivorous species are at high risk of acquiring and disseminating resistance bacteria; aquatic environments are hotspots for resistance bacteria exchange and are potential sites that we can intervene by reducing contamination to control the spread of antibiotic resistance.

Conclusions

References

[1]

Rossolini GMArena  FPecile P Pollini S . Update on the antibiotic resistance crisis. Curr Opin Pharmacol 201418: 56–60

[2]

O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 2014; doi:10.1038/510015a 

[3]

Laxminarayan RAmabile-Cuevas  CFCars O Evans T Heymann DL Hoffman S Holmes A Mendelson M Sridhar D Woolhouse M Røttingen JA . UN High-Level Meeting on antimicrobials—what do we need? Lancet 2016388(10041): 218–220

[4]

Abraham EPChain  E. An enzyme from bacteria able to destroy penicillin. Nature 1940146(3713): 837

[5]

Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 200536(6): 697–705

[6]

D’Costa VMKing  CEKalan L Morar M Sung WWL Schwarz C Froese D Zazula G Calmels F Debruyne R Golding GB Poinar HN Wright GD . Antibiotic resistance is ancient. Nature 2011477(7365): 457–461

[7]

Riesenfeld CSGoodman  RMHandelsman J . Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 20046(9): 981–989

[8]

Sommer MOADantas  GChurch GM . Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009325(5944): 1128–1131

[9]

D’Costa VMMcGrann  KMHughes DW Wright GD . Sampling the antibiotic resistome. Science 2006311(5759): 374–377

[10]

Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 20075(3): 175–186

[11]

Davies JDavies  D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 201074(3): 417–433

[12]

Martinez JL. Antibiotics and antibiotic resistance genes in natural environments. Science 2008321(5887): 365–367

[13]

Allen HKDonato  JWang HH Cloud-Hansen KA Davies J Handelsman J . Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 20108(4): 251–259

[14]

Dantas GSommer  MOOluwasegun RD Church GM . Bacteria subsisting on antibiotics. Science 2008320(5872): 100–103

[15]

Forsberg KJReyes  AWang B Selleck EM Sommer MO Dantas G . The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012337(6098): 1107–1111

[16]

Baquero FMartinez  JLCanton R . Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 200819(3): 260–265

[17]

Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 20068(7): 1137–1144

[18]

Zhang XXZhang  TFang HH . Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 200982(3): 397–414

[19]

Hatosy SMMartiny  AC. The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 201581(21): 7593–7599

[20]

Yap MN. The double life of antibiotics. Mo Med 2013110(4): 320–324

[21]

Zhu YGJohnson  TASu JQ Qiao MGuo  GXStedtfeld RD Hashsham SA Tiedje JM . Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 2013110(9): 3435–3440

[22]

Schmidt ASBruun  MSDalsgaard I Larsen JL . Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 200167(12): 5675–5682

[23]

Aarestrup FM. Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb Drug Resist 19951(3): 255–257

[24]

Cheng WChen  HSu C Yan S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 201361: 1–7

[25]

Ibrahim DRDodd  CEStekel DJ Ramsden SJ Hobman JL . Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiol Ecol 201692(4): fiw013

[26]

Kazimierczak KAScott  KPKelly D Aminov RI . Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 200975(6): 1717–1722

[27]

Xiao LEstelle  JKiilerich P Ramayo-Caldas Y Xia ZFeng  QLiang S Pedersen AØ Kjeldsen NJ Liu CMaguin  EDoré J Pons NLe Chatelier  EPrifti E Li JJia  HLiu X Xu XEhrlich  SDMadsen L Kristiansen K Rogel-Gaillard C Wang J. A reference gene catalogue of the pig gut microbiome. Nat Microbiol 20161: 16161

[28]

Anderson ES. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol 196822(1): 131–180

[29]

Weinstein LGoldfield  MChang TW . Infections occurring during chemotherapy; a study of their frequency, type and predisposing factors. N Engl J Med 1954251(7): 247–255

[30]

Salyers AAGupta  AWang Y . Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 200412(9): 412–416

[31]

Hu YYang  XQin J Lu NCheng  GWu N Pan YLi  JZhu L Wang XMeng  ZZhao F Liu DMa  JQin N Xiang C Xiao YLi  LYang H Wang JYang  RGao GF Wang JZhu  B. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 20134: 2151

[32]

Hu YYang  XLu N Zhu B. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 20145(2): 245–249

[33]

Hu YZhu  B. The human gut antibiotic resistome in the metagenomic era: progress and perspectives. Infect Dis Transl Med 20162(1): 41–47

[34]

Martinez JLCoque  TMBaquero F . What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 201513(2): 116–123

[35]

Liu YYWang  YWalsh TR Yi LXZhang  RSpencer J Doi YTian  GDong B Huang X Yu LFGu  DRen H Chen XLv  LHe D Zhou HLiang  ZLiu JH Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 201616(2): 161–168

[36]

Cox GWright  GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013303(6–7): 287–292

[37]

Martinez JLBaquero  FAndersson DI . Predicting antibiotic resistance. Nat Rev Microbiol 20075(12): 958–965

[38]

Gogarten JPTownsend  JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 20053(9): 679–687

[39]

Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008153(S1): S347–S357

[40]

Rice LB. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother 199842(8): 1871–1877

[41]

Rowe-Magnus DAMazel  D. The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol 2002292(2): 115–125

[42]

Hu YZhu  YMa Y Liu FLu  NYang X Luan CYi  YZhu B . Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother 201559(2): 1152–1161

[43]

Dobrindt UHochhut  BHentschel U Hacker J . Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 20042(5): 414–424

[44]

Fournier PEVallenet  DBarbe V Audic S Ogata H Poirel L Richet H Robert C Mangenot S Abergel C Nordmann P Weissenbach J Raoult D Claverie JM . Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 20062(1): 62–72

[45]

Hu YYang  XLi J Lv NLiu  FWu J Lin IYC Wu NWeimer  BCGao GF Liu YZhu  B. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 201682(22): 6672–6681

[46]

Thomas CMNielsen  KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 20053(9): 711–721

[47]

Popa ODagan  T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 201114(5): 615–623

[48]

Forsberg KJPatel  SGibson MK Lauber CL Knight R Fierer N Dantas G . Bacterial phylogeny structures soil resistomes across habitats. Nature 2014509(7502): 612–616

[49]

Smillie CSSmith  MBFriedman J Cordero OX David LA Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011480(7376): 241–244

[50]

Gibson MKForsberg  KJDantas G . Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 20159(1): 207–216

[51]

Smith HW. Transfer of antibiotic resistance from animal and human strains of Escherichia coli to resident E. coli in the alimentary tract of man. Vet Rec 196985(2): 31–33

[52]

Rodriguez-Mozaz SChamorro  SMarti E Huerta B Gros MSànchez-Melsió  ABorrego CM Barceló D Balcázar JL . Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 201569: 234–242

[53]

Korzeniewska EKorzeniewska  AHarnisz M . Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf 201391: 96–102

[54]

Gotz ASmalla  K. Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 199763(5): 1980–1986

[55]

Winokur PLVonstein  DLHoffman LJ Uhlenhopp EK Doern GV . Evidence for transfer of CMY-2 AmpC β-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother 200145(10): 2716–2722

[56]

Moubareck CBourgeois  NCourvalin P Doucet-Populaire F . Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother 200347(9): 2993–2996

[57]

No author listed. Antimicrobial resistance: implications for the food system. An expert report, funded by the IFT Foundation. Compr Rev Food Sci F 20065(3): 71–137

[58]

Hu YLiu  FLin IY Gao GFZhu  B. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 201616(2): 146–147

[59]

Graham DWCollignon  PDavies J Larsson DG Snape J . Underappreciated role of regionally poor water quality on globally increasing antibiotic resistance. Environ Sci Technol 201448(20): 11746–11747

[60]

Arnold KEWilliams  NJBennett M . ‘Disperse abroad in the land’: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 201612(8): 20160137

[61]

Vittecoq MGodreuil  SPrugnolle F Durand P Brazier L Renaud N Arnal A Aberkane S Jean-Pierre H Gauthier-Clerc M Thomas F Renaud F . Antimicrobial resistance in wildlife. J Appl Ecol 201653(2): 519–529

[62]

Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 2009157(11): 2893–2902

[63]

Pruden APei  RTStorteboom H Carlson KH . Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 200640(23): 7445–7450

[64]

Laxminarayan RDuse  AWattal C Zaidi AK Wertheim HF Sumpradit N Vlieghe E Hara GL Gould IM Goossens H Greko C So ADBigdeli  MTomson G Woodhouse W Ombaka E Peralta AQ Qamar FN Mir FKariuki  SBhutta ZA Coates A Bergstrom R Wright GD Brown ED Cars O. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 201313(12): 1057–1098

[65]

Nathan CCars  O. Antibiotic resistance-problems, progress, and prospects. N Engl J Med 2014371(19): 1761–1763

[66]

McCullough ARParekh  SRathbone J Del Mar CB Hoffmann TC . A systematic review of the public’s knowledge and beliefs about antibiotic resistance. J Antimicrob Chemother 201671(1): 27–33

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (173KB)

3029

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/