Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia

Dan Huang , Yan Yang , Jian Sun , Xiaorong Dong , Jiao Wang , Hongchen Liu , Chengquan Lu , Xueyu Chen , Jing Shao , Jinsong Yan

Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 410 -422.

PDF (508KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 410 -422. DOI: 10.1007/s11684-017-0527-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia

Author information +
History +
PDF (508KB)

Abstract

Aberrant expression of annexin A2-S100A10 heterotetramer (AIIt) associated with PML/RARα fusion protein causes lethal hyperfibrinolysis in acute promyelocytic leukemia (APL), but the mechanism is unclear. To facilitate the investigation of regulatory association between ANXA2 and promyelocytic leukemia/retinoic acid receptor a (PML/RARα) fusion protein, this work was performed to determine the transcription start site of ANXA2 promoter with rapid amplification of 5′-cDNA ends analysis. Zinc-induced U937/PR9 cells expressed PML/RARα fusion protein, and resultant increases in ANXA2 transcripts and translational expressions of both ANXA2 and S100A10, while S100A10 transcripts remained constitutive. The transactivation of ANXA2 promoter by PML/RARα fusion protein was 3.29±0.13 fold higher than that by control pSG5 vector or wild-type RARα. The overexpression of ANXA2 in U937 transfected with full-length ANXA2 cDNA was associated with increased S100A10 subunit, although S100A10 transcripts remained constitutive. The tPA-dependent initial rate of plasmin generation (IRPG) in zinc-treated U937/PR9 increased by 2.13-fold, and cell invasiveness increased by 27.6%. Antibodies against ANXA2, S100A10, or combination of both all remarkably inhibited the IRPG and invasiveness in U937/PR9 and NB4. Treatment of zinc-induced U937/PR9 or circulating APL blasts with all-trans retinoic acid (ATRA) significantly reduced cell surface ANXA2 and S100A10 and associated reductions in IRPG and invasiveness. Thus, PML/RARα fusion protein transactivated the ANXA2 promoter to upregulate ANXA2 and accumulate S100A10. Increased AIIt promoted IRPG and invasiveness, both of which were partly abolished by antibodies against ANXA2 and S100A10 or by ATRA.

Keywords

annexin A2-S100A10 heterotetramer / PML/RARα fusion protein / plasmin / cell invasion / acute promyelocytic leukemia

Cite this article

Download citation ▾
Dan Huang, Yan Yang, Jian Sun, Xiaorong Dong, Jiao Wang, Hongchen Liu, Chengquan Lu, Xueyu Chen, Jing Shao, Jinsong Yan. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia. Front. Med., 2017, 11(3): 410-422 DOI:10.1007/s11684-017-0527-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Melnick ALicht JD. Deconstructing a disease: RARα its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 199993(10): 3167–3215

[2]

Hu JLiu YFWu CFXu FShen ZXZhu YMLi JMTang WZhao WLWu WSun HPChen QSChen BZhou GBZelent AWaxman SWang ZYChen SJChen Z. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2009106(9): 3342–3347

[3]

Iland HJBradstock KSupple SGCatalano ACollins MHertzberg MBrowett PGrigg AFirkin FHugman AReynolds JDi Iulio JTiley CTaylor KFilshie RSeldon MTaper JSzer JMoore JBashford JSeymour JF; Australasian Leukaemia and Lymphoma Group. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012120(8): 1570–1580

[4]

Iland HBradstock KSeymour JHertzberg MGrigg ATaylor KCatalano JCannell PHorvath NDeveridge SBrowett PBrighton TChong LSpringall FAyling JCatalano ASupple SCollins MDi Iulio JReynolds J; Australasian Leukaemia and Lymphoma Group. Results of the APML3 trial incorporating all-trans-retinoic acid and idarubicin in both induction and consolidation as initial therapy for patients with acute promyelocytic leukemia. Haematologica 201297(2): 227–234

[5]

Zhou JZhang YLi JLi XHou JZhao YLiu XHan XHu LWang SZhao YZhang YFan SLv CLi LZhu L. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 2010115(9): 1697–1702

[6]

Thirugnanam RGeorge BChendamarai ELakshmi KMBalasubramanian PViswabandya ASrivastava AChandy MMathews V. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol Blood Marrow Transplant 200915(11): 1479–1484

[7]

Park JHQiao BPanageas KSSchymura MJJurcic JGRosenblat TLAltman JKDouer DRowe JMTallman MS. Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 2011118(5): 1248–1254

[8]

Shen ZXShi ZZFang JGu BWLi JMZhu YMShi JYZheng PZYan HLiu YFChen YShen YWu WTang WWaxman Sde Th Hé Wang ZYChen SJChen Z. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004101(15): 5328–5335

[9]

Mathews VGeorge BChendamarai ELakshmi KMDesire SBalasubramanian PViswabandya AThirugnanam RAbraham AShaji RVSrivastava AChandy M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol 201028(24): 3866–3871

[10]

Liu YJWu DPLiang JYQiu HYJin ZMTang XWFu CCMa X. Long-term survey of outcome in acute promyelocytic leukemia: a single center experience in 340 patients. Med Oncol 201128(Suppl 1): S513–S521

[11]

Avvisati GLo Coco FMandelli F. Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol 200138(1): 4–12

[12]

Breen KAGrimwade DHunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol 2012156(1): 24–36

[13]

Menell JSCesarman GMJacovina ATMcLaughlin MALev EAHajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 1999340(13): 994–1004

[14]

Yan JWang KDong LLiu HChen WXi WDing QKieffer NCaen JPChen SChen ZXi X. PML/RARα fusion protein transactivates the tissue factor promoter through a GAGC-containing element without direct DNA association. Proc Natl Acad Sci USA 2010107(8): 3716–3721

[15]

Flood ECHajjar KA. The annexin A2 system and vascular homeostasis. Vascul Pharmacol 201154(3–6): 59–67

[16]

O’Connell PAMadureira PABerman JNLiwski RSWaisman DM. Regulation of S100A10 by the PML-RAR-α oncoprotein. Blood 2011117(15): 4095–4105

[17]

Udalova IAKwiatkowski D. Interaction of AP-1 with a cluster of NF-κB binding elements in the human TNF promoter region. Biochem Biophys Res Commun 2001289(1): 25–33

[18]

Meng YSKhoury HDick JEMinden MD. Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 200519(11): 1941–1947

[19]

Dignam JDLebovitz RMRoeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 198311(5): 1475–1489

[20]

Surette APMadureira PAPhipps KDMiller VASvenningsson PWaisman DM. Regulation of fibrinolysis by S100A10 in vivo. Blood 2011118(11): 3172–3181

[21]

Brownstein CDeora ABJacovina ATWeintraub RGertler MKhan KMFalcone DJHajjar KA. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood 2004103(1): 317–324

[22]

Kassam GChoi KSGhuman JKang HMFitzpatrick SLZackson TZackson SToba MShinomiya AWaisman DM. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem 1998273(8): 4790–4799

[23]

Olwill SAMcGlynn HGilmore WSAlexander HD. Annexin II cell surface and mRNA expression in human acute myeloid leukaemia cell lines. Thromb Res 2005115(1–2): 109–114

[24]

Nervi CFerrara FFFanelli MRippo MRTomassini BFerrucci PFRuthardt MGelmetti VGambacorti-Passerini CDiverio DGrignani FPelicci  PGTesti R. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARα fusion protein. Blood 199892(7): 2244–2251

[25]

Bharadwaj ABydoun MHolloway RWaisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci 201314(3): 6259–6305

[26]

Moreau KGhislat GHochfeld WRenna MZavodszky ERunwal GPuri CLee SSiddiqi FMenzies FMRavikumar BRubinsztein DC. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun 20156: 8045

[27]

Huang BDeora ABHe KLChen KSui GJacovina ATAlmeida DHong PBurgman PHajjar KA. Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice. Blood 2011118(10): 2918–2929

[28]

Madureira PASurette APPhipps KDTaboski MASMiller VAWaisman DM. The role of the annexin A2 heterotetramer in vascular fibrinolysis. Blood 2011118(18): 4789–4797

[29]

Sharma MCSharma M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 200713(35): 3568–3575

[30]

Hou YYang LMou MHou YZhang APan NQiang RWei LZhang N. Annexin A2 regulates the levels of plasmin, S100A10 and Fascin in L5178Y cells. Cancer Invest 200826(8): 809–815

[31]

He KLDeora ABXiong HLing QWeksler BBNiesvizky RHajjar KA. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008283(28): 19192–19200

[32]

Nazmi AROzorowski GPejic MWhitelegge JPGerke VLuecke H. N-terminal acetylation of annexin A2 is required for S100A10 binding. Biol Chem 2012393(10): 1141–1150

[33]

Hedhli NFalcone DJHuang BCesarman-Maus GKraemer RZhai HTsirka SESantambrogio LHajjar KA. The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 20122012: 406273

[34]

Das RBurke TPlow EF. Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 2007110(10): 3763–3772

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (508KB)

2433

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/