Application of liquid biopsy in precision medicine: opportunities and challenges

Junyun Wang , Shuang Chang , Guochao Li , Yingli Sun

Front. Med. ›› 2017, Vol. 11 ›› Issue (4) : 522 -527.

PDF (172KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (4) : 522 -527. DOI: 10.1007/s11684-017-0526-7
REVIEW
REVIEW

Application of liquid biopsy in precision medicine: opportunities and challenges

Author information +
History +
PDF (172KB)

Abstract

Precision medicine for cancer patients aims to adopt the most suitable treatment options during diagnosis and treatment of individuals. Detecting circulating tumor cell (CTC) or circulating tumor DNA (ctDNA) in plasma or serum could serve as liquid biopsy, which would be useful for numerous diagnostic applications. Liquid biopsies can help clinicians screen and detect cancer early, stratify patients to the most suitable treatment and real-time monitoring of treatment response and resistance mechanisms in the tumor, evaluate the risk for metastatic relapse, and estimate prognosis. We summarized the advantages and disadvantages of tissue and liquid biopsies. We also further compared and analyzed the advantages and limitations of detecting CTCs, ctDNAs, and exosomes. Furthermore, we reviewed the literature related with the application of serum or plasma CTCs, ctDNAs, and exosomes for diagnosis and prognosis of cancer. We also analyzed their opportunities and challenges as future biomarkers. In the future, liquid biopsies could be used to guide cancer treatment. They could also provide the ideal scheme to personalize treatment in precision medicine.

Keywords

liquid biopsy / circulating tumor cells / cell-free ctDNA / exosomes / precision medicine

Cite this article

Download citation ▾
Junyun Wang, Shuang Chang, Guochao Li, Yingli Sun. Application of liquid biopsy in precision medicine: opportunities and challenges. Front. Med., 2017, 11(4): 522-527 DOI:10.1007/s11684-017-0526-7

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Diagnosing and screening tumors through non-invasive methods represent an important paradigm shift in precision medicine. Tumors are highly heterogeneous, and sampling in its entirety is challenging. Tissue biopsy is invasive and cannot reflect current tumor dynamics or sensitivity to the treatment. With the development of sensitive techniques that can detect rare mutations, the heterogeneous landscape of tumor can be determined using a blood sample [1].

Liquid biopsy refers to the analysis of circulating tumor cells (CTCs) and cell-free circulating nucleic acids (in particular, circulating tumor DNA (ctDNA) and exosomes) released in the peripheral blood from the primary tumor and/or metastatic deposits. A liquid biopsy or blood sample can provide the genetic landscape and epigenetic characteristics of all cancerous lesions and offer the opportunity to track genomic evolution systematically [2]. The response to treatments and the development of acquired resistance should also be predicted. Details of the tumor genetic profile can enable the prediction of disease progression and response to therapies. Liquid biopsy can be used in cancer screening, patient stratification, and monitoring [3]. In addition, short ctDNA fragments harbor the footprints of transcription factors, which could indicate the cell-type origin of pathological states, such as cancer [4].

Table 1 provides a summary of the advantages and disadvantages of tissue and liquid biopsies.

CTCs

CTCs were first detected in cancer patients in 1869 [7]. CTCs, ctDNAs, and exosomes are released from the primary tumor and/or metastatic sites into the bloodstream, as shown in Fig. 1. Numerous studies in the past decade showed that CTCs may be used as a biomarker to predict cancer progression and survival in metastatic [79] and possibly in early-stage cancer patients [5,10].

Detection and clinical application of CTC

An average metastatic carcinoma patient shows 5–50 CTCs for approximately 7.5 ml of blood. High numbers of CTC correlate with aggressive disease, increased metastasis, and decreased time to relapse [11]. CTCs potentially carry valuable information about tumor composition, invasiveness, drug susceptibility, and resistance to therapy [12]. Given that high CTC burden can predict poor prognosis in metastatic disease, efforts regarding aggressive chemotherapeutic intervention are also being tested [13].

Therefore, CTCs could serve as a real-time marker for disease progression and survival. CTCs can also screen and detect cancer early, guide therapeutic management, determine therapy effectiveness or necessity even in the absence of detectable metastases, and provide insights into the mechanisms of drug resistance.

Opportunities and challenges of CTCs

The potential clinical value of CTCs is clear: early detection and treatment of metastatic spread are key for disease outcome, and CTCs can target metastasis in real time [14]. CTC enumeration and characterization with certified systems offer reliable information on prognosis, and liquid biopsy may be considered to identify therapeutic targets or mechanisms of resistance on metastatic cells, such as mutations in KRAS [15]. CTC enumeration correlates with poor clinicopathological features and exhibits prognostic and predictive values.

Despite this considerable potential, CTC application is confronted with many challenges [15]. The possibility of using tumor metastasis with CTCs for detection should also be assessed. The few CTCs in serum and current detection technologies limit the further clinical application of CTCs. The genetic and epigenetic variation data collected by analyzing solid tumor biopsies provide valuable insights into a patient’s disease and therapy options. In the near future, CTCs may significantly improve our ability to monitor malignancies and indicate whether or not a treatment may work, thereby providing the complementary roles of conventional and liquid biopsies [16].

ctDNA

ctDNA can be released from primary tumors, CTCs, micrometastasis, or overt metastases into the blood of cancer patients. The majority of ctDNA originates from apoptotic and necrotic tumor cells that release their fragmented DNA in the blood. ctDNA concentration in serum or blood is significantly increased compared with that of healthy individuals [17]; this change is correlated with malignancy [18].

Detection and clinical application of ctDNA

Increased concentrations of ctDNA fragments are observed in blood plasma and serum of cancer patients with various tumor types, and they are correlated with unfavorable outcome [19]. Analysis of tumor-linked genetic alterations is increasingly used for diagnostic, prognostic, and treatment purposes. ctDNA can be a promising biomarker in the liquid biopsy of cancer [20]. In addition, ctDNA methylation assay can significantly promote diagnoses of cancer of unknown primary origin and guide remarkably precise therapies associated with improved outcomes [21].

DNA methylation profiling can also be applied in clinic, but confronted with challenges [22]. DNA methylation profiling can be used for disease diagnosis. Non-invasive DNA methylation markers for diagnosis of many cancers, such as GSTP1 hypermethylation as a biomarker of prostate and colorectal cancers with a sensitivity of 82% and a specificity of 95% [23], frequently show hypermethylation of APC, MGMT, RASSF2, and WNT inhibitory factor 1 [22].

Opportunities and challenges of ctDNA

Analyses of ctDNA may replace CTC detection for monitoring cancer progression in the future [6,2426]. The major challenge with ctDNA analysis is assay sensitivity and specificity. Multigene panel analysis of ctDNA may increase test sensitivity. Many researchers indicated that ctDNA is more sensitive than CTCs in early detection; ctDNA also presents large dynamic range and considerable relation with changes in tumor burden [24,27].

The challenges of genome-wide DNA methylation analysis are as follows [28]: whether ctDNA reflects a representative characteristic of a cancer, whether metastatic tumors release the same amount of DNA as the primary tumors, whether all the cells in a tumor release the same amount of ctDNA as the other, and whether an accurate profile of tumor burden or a real-time monitoring of emerging or epigenetic mutations saves patients or improves their quality of life [29].

However, results regarding these biomarkers should be validated in independent cohorts of cancer patients. Furthermore, the clinical relevance in daily practice is difficult to determine. The dynamic changes in the ability to classify different subtypes of cancers and measure their evolution functional properties by non-invasive blood monitoring strongly relate cancer therapeutics and diagnostics.

Exosomes

Exosomes are lipid-bilayer-enclosed extracellular vesicles (carrying RNA, DNA, and protein) secreted by cells and circulated in the blood; these vesicles can also function as intercellular messengers, which contribute to their increased recognition in the scientific field [3035]. Microvesicles, such as exosomes, contain miRNAs, proteins, and DNAs; they have also become promising diagnostic tools of liquid biopsy [36,37]. In addition, exosomes mediate tumor metastasis [38,39].

Detection and clinical application of exosomes

Exosomes present considerable application prospects, such as depiction and capture of tumorigenesis, tumor progression, and predictive markers, as shown in Fig. 2. The isolation of cancer exosomes from cancer patients remains a challenge owing to the lack of specific markers that can differentiate cancer from noncancer exosomes. Melo et al. provided evidence that GPC1 may serve as a pan-specific marker of cancer exosomes. Therefore, GPC1 may be an attractive candidate for detection and isolation of exosomes in the blood serum of patients with cancer for genetic analysis of specific alterations [36].

Opportunities and challenges of exosomes

Detection of exosomes regarding somatic genetic alterations in the blood has been challenging, but new approaches for such analyses have improved the sensitive and specific detection at low levels.

Table 2 presents a summary of the advantages and limitations of detecting CTCs, cell-free ctDNAs, and exosomes [3,40].

Perspectives

CTCs, ctDNAs, and circulating exosomes [36,42] might serve as promising novel candidates as blood-based biomarkers. However, when and how the liquid biopsy will be used as a routine method for cancer patient care should be further determined. Currently, a real gap exists between the gained attraction of liquid biopsy in media and the increased number of publications in this field and its application to the patients. Finally, future blueprint of liquid biopsy in precision medicine should include the affordable cost, reproducibility and reliability of the results, and performance comparison of liquid biopsy and the existing solid biopsy among cancer patients. On the basis of this perspective, we can adopt the optimal strategy or remarkably effective drugs based on patient characteristics. Nevertheless, in the absence of subsequent treatment strategies or drugs, significant benefit from the early detection and precision medication is not obtained, despite that many risk factors related with the cancer or other diseases are screened.

In summary, the molecular and functional analyses of CTCs and circulating nucleic acids could be used as promising diagnostics and prognostics to enhance the stratification of therapies and acquire insights into precision therapy.

References

[1]

Chan KCAJiang PYZheng YWLLiao GJWSun HWong JSiu SSNChan WCChan SLChan ATCLai PBSChiu RWKLo YMD. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 201359(1): 211–224

[2]

Crowley EDi Nicolantonio FLoupakis FBardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 201310(8): 472–484

[3]

Brock GCastellanos-Rizaldos EHu LCoticchia CSkog J. Liquid biopsy for cancer screening, patient stratification and monitoring. Transl Cancer Res 20154(3): 280–290 doi: 10.3978/j.issn.2218-676X.2015.06.05

[4]

Snyder MWKircher MHill AJDaza RMShendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 2016164(1–2): 57–68

[5]

Alix-Panabieres CPantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 20166(5): 479–491

[6]

Diaz LA JrBardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 201432(6): 579–586

[7]

Cristofanilli MBudd GTEllis MJStopeck AMatera JMiller MCReuben JMDoyle GVAllard WJTerstappen LWHayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004351(8): 781–791

[8]

Cohen SJPunt CJAIannotti NSaidman BHSabbath KDGabrail NYPicus JMorse MMitchell EMiller MCDoyle GVTissing HTerstappen LWMMMeropol NJ. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 200826(19): 3213–3221

[9]

De Bono JSScher HIMontgomery RBParker CMiller MCTissing HDoyle GVTerstappen LWPienta KJRaghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinic Cancer Res 200814(19):6302–6309 doi: 10.1158/1078-0432.CCR-08-0872

[10]

Rhim ADMirek ETAiello NMMaitra ABailey JMMcAllister FReichert MBeatty GLRustgi AKVonderheide RHLeach SDStanger BZ. EMT and dissemination precede pancreatic tumor formation. Cell 2012148(1–2): 349–361

[11]

Chaffer CLWeinberg RA. A perspective on cancer cell metastasis. Science 2011331(6024): 1559–1564

[12]

Gold BCankovic MFurtado LVMeier FGocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn 201517(3): 209–224

[13]

Bidard FCFehm TIgnatiadis MSmerage JBAlix-Panabieres CJanni WMessina CPaoletti CMuller VHayes DFPiccart MPierga JY. Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 201332(1–2): 179–188

[14]

Plaks VKoopman CDWerb Z. Cancer. Circulating tumor cells. Science 2013341(6151): 1186–1188

[15]

Alix-Panabieres CPantel K. Challenges in circulating tumour cell research. Nat Rev Cancer 201414(9): 623–631

[16]

Schlange TPantel K. Potential of circulating tumor cells as blood-based biomarkers in cancer liquid biopsy. Pharmacogenomics 201617(3): 183–186

[17]

Leon SAShapiro BSklaroff DMYaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 197737(3): 646–650 

[18]

Stroun MAnker PLyautey JLederrey CMaurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 198723(6): 707–712

[19]

Scher HIHeller GMolina AAttard GDanila DCJia XYPeng WMSandhu SKOlmos DRiisnaes RMcCormack RBurzykowski TKheoh TFleisher MBuyse Mde Bono JS. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol 201533(12): 1348–1355

[20]

Cheng FSu LQian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 20167(30): 48832–48841 doi: 10.18632/oncotarget.9453

[21]

Moran SMartínez-Cardús ASayols SMusulén EBalañá CEstival-Gonzalez AMoutinho CHeyn HDiaz-Lagares Ade Moura MCStella GMComoglio PMRuiz-Miró MMatias-Guiu XPazo-Cid RAntón ALopez-Lopez RSoler GLongo FGuerra IFernandez SAssenov YPlass CMorales RCarles JBowtell DMileshkin LSia DTothill RTabernero JLlovet JMEsteller M. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 201617(10):1386–1395 doi: 10.1016/S1470-2045(16)30297-2

[22]

Heyn HEsteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 201213(10): 679–692

[23]

Van Neste LHerman JGOtto GBigley JWEpstein JIVan Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate 201272(11): 1248–1261

[24]

Dawson SJTsui DWMurtaza MBiggs HRueda OMChin SFDunning MJGale DForshew TMahler-Araujo BRajan SHumphray SBecq JHalsall DWallis MBentley DCaldas CRosenfeld N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013368(13): 1199–1209

[25]

Kidess EJeffrey SS. Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 20135(8):70 doi: 10.1186/gm474

[26]

Tan CRZhou LEl-Deiry WS. Circulating tumor cells versus circulating tumor DNA in colorectal cancer: pros and cons. Curr Colorectal Cancer Rep 201612(3): 151–161

[27]

Bettegowda CSausen MLeary RJKinde IWang YXAgrawal NBartlett BRWang HLuber BAlani RMAntonarakis ESAzad NSBardelli ABrem HCameron JLLee CCFecher LAGallia GLGibbs PLe DGiuntoli RLGoggins MHogarty MDHoldhoff MHong SMJiao YCJuhl HHKim JJSiravegna GLaheru DALauricella CLim MLipson EJMarie SKNNetto GJOliner KSOlivi AOlsson LRiggins GJSartore-Bianchi ASchmidt KShih IMOba-Shinjo SMSiena STheodorescu DTie JNHarkins TTVeronese SWang TLWeingart JDWolfgang CLWood LDXing DMHruban RHWu JAllen PJSchmidt CMChoti MAVelculescu VEKinzler KWVogelstein BPapadopoulos NLuis AJ. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 20146(224): 224ra24

[28]

Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 201011(3): 191–203

[29]

Yong E. Cancer biomarkers: written in blood. Nature 2014511(7511): 524–526

[30]

Al-Nedawi KMeehan BMicallef JLhotak VMay LGuha ARak J. Intercellular transfer of the oncogenic receptor EGFrvIII by microvesicles derived from tumour cells. Nat Cell Biol 200810(5): 219–624 doi: 10.1038/ncb1725

[31]

Baj-Krzyworzeka MSzatanek RWeglarczyk KBaran JUrbanowicz BBranski PRatajczak MZZembala M. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 200655(7): 808–818

[32]

Miranda KCBond DTMcKee MSkog JPaunescu TGDa Silva NBrown DRusso LM. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 201078(2): 191–199

[33]

Noerholm MBalaj LLimperg TSalehi AZhu LDHochberg FHBreakefield XOCarter BSSkog J. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 201212(1): 22

[34]

Valadi HEkstrom KBossios ASjostrand MLee JJLotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 20079(6): 654–659

[35]

van der Vos KEBalaj LSkog JBreakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 201131(6): 949–959

[36]

Melo SALuecke LBKahlert CFernandez AFGammon STKaye JLeBleu VSMittendorf EAWeitz JRahbari NReissfelder CPilarsky CFraga MFPiwnica-Worms DKalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015523(7559): 177–182

[37]

Williams CRodriguez-Barrueco RSilva JMZhang WJHearn SElemento OPaknejad NManova-Todorova KWelte KBromberg JPeinado HLyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 201424(6): 766–769

[38]

Syn NWang LZSethi GThiery JPGoh BC. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 201637(7): 606–617

[39]

Peinado HAleckovic MLavotshkin SMatei ICosta-Silva BMoreno-Bueno GHergueta-Redondo MWilliams CGarcia-Santos GGhajar CMNitadori-Hoshino AHoffman CBadal KGarcia BACallahan MKYuan JDMartins VRSkog JKaplan RNBrady MSWolchok JDChapman PBKang YBBromberg JLyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 201218(6): 883–891

[40]

Ilie MHofman VLong EBordone OSelva EWashetine KMarquette CHHofman P. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 20142(11): 107 doi: 10.3978/j.issn.2305-5839.2014.08.11

[41]

Pantel KAlix-Panabieres C. Liquid biopsy: potential and challenges. Mol Oncol 201610(3): 371–373

[42]

Hoshino ACosta-Silva BShen TLRodrigues GHashimoto ATesic Mark MMolina HKohsaka SDi Giannatale ACeder SSingh SWilliams CSoplop NUryu KPharmer LKing TBojmar LDavies AEArarso YZhang TZhang HHernandez JWeiss JMDumont-Cole VDKramer KWexler LHNarendran ASchwartz GKHealey JHSandstrom PJørgen Labori KKure EHGrandgenett PMHollingsworth MAde Sousa MKaur SJain MMallya KBatra SKJarnagin WRBrady MSFodstad OMuller VPantel KMinn AJBissell MJGarcia BAKang YRajasekhar VKGhajar CMMatei IPeinado HBromberg JLyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015527(7578): 329–335

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (172KB)

3322

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/