Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer

Bo Zhou , Hongbin Xu , Meng Xia , Chaoyang Sun , Na Li , Ensong Guo , Lili Guo , Wanying Shan , Hao Lu , Yifan Wu , Yuan Li , Degui Yang , Danhui Weng , Li Meng , Junbo Hu , Ding Ma , Gang Chen , Kezhen Li

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 214 -222.

PDF (363KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 214 -222. DOI: 10.1007/s11684-017-0518-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer

Author information +
History +
PDF (363KB)

Abstract

MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3′-UTR of the E-cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3′-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT-PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial‒mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E-cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.

Keywords

ovarian cancer / metastasis / miR-9 / E-cadherin

Cite this article

Download citation ▾
Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer. Front. Med., 2017, 11(2): 214-222 DOI:10.1007/s11684-017-0518-7

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Epithelial ovarian cancer is the fourth most lethal cancer among women and the leading cause of gynecological cancer deaths worldwide. The five-year survival rate for epithelial ovarian cancer patients is only 44% in the USA [], because most of these patients are diagnosed at an advanced stage with widely omental metastases [,]. However, the molecular mechanisms of metastasis remain ambiguous. A better understanding of these mechanisms is especially needed for the early diagnosis and enhanced treatment of ovarian cancer.

Materials and methods

Tissue samples

Cell culture

Reagents and miRNA transfections

Plasmid construction and luciferase assay

miRNA target prediction

RNA and miRNA extraction

Wound healing assay

Migration and invasion assay

Immunofluorescence (IF) assay

Western blot

Statistical analysis

Results

miR-9 is upregulated in metastatic ovarian cancer tissue

miR-9 level may be negatively correlated with the E-cadherin expression but positively correlated with vimentin expression

E-cadherin is a direct target of miR-9

Bioinformatics analysis tools were used to search for the potential target of miR-9. The results show that E-cadherin was a putative candidate. SKOV3 and A2780 cells were used to detect E-cadherin expression after miR-9 mimics or inhibitor transfection to test whether E-cadherin was regulated by miR-9. SKOV3 and A2780 cells were transfected with miR-9 mimics for 36 h. qRT-PCR results showed that miR-9 expression was significantly upregulated compared with transfection with miR-9 NC (Fig. 2A). Meanwhile, the E-cadherin expression was found to be considerably downregulated when miR-9 mimics was transiently transfected into SKOV3 and A2780 cells after 36 h of detection through qRT-PCR and 48 h through Western blot separately (Fig. 2B and 2C). By contrast, miR-9 expression was significantly downregulated when transfected with miR-9 inhibitor (data not shown), and the above effects were also restored as shown by qRT-PCR and Western blot results (Fig. 2D and 2E). Next, a luciferase reporter assay was performed to confirm whether E-cadherin was a direct target of miR-9. Wild-type or mutant-type E-cadherin 3′-UTR sequence was cloned into the psi-check 2 vector. SKOV3 cells were co-transfected with miR-9 mimics and the psi-check 2 plasmid (wild-type or mutant) for 48 h. The dual-luciferase reporter assay showed that the luciferase activity was significantly reduced in the wild-type E-cadherin 3′-UTR but not the mutant type (Fig. 2F and 2G). These results demonstrated that E-cadherin was directly targeted by miR-9.

miR-9 promotes ovarian cancer cell migration and invasion

miR-9 regulates EMT-related genes to promote tumor cell metastasis

Discussion

Epithelial ovarian cancer is a lethal and highly metastatic disease with the highest mortality and morbidity in all gynecologic cancers in the developed world with approximately 14 030 deaths from the disease in 2013 []. The majority of epithelial ovarian cancer patients will eventually relapse at metastatic sites. EMT plays a key role in the metastasis of tumor cells, and this process possesses a multi-faceted transdifferentiation program that enables tumor cells to acquire malignancy-associated phenotypes []. Numerous studies have indicated that miRNAs, which are important gene regulators acting as oncomiRs or anti-oncomiRs, are increasingly involved in regulating the malignant tumor progression. EMT was also found to be regulated by metastamiRs [], which exert important roles in various processes of metastasis. In this study, miR-9 was identified to be a metastamiR in ovarian serous cancer. miR-9 is selectively expressed in neural tissue under normal conditions and exhibits a regulator and prodifferentiation function []. miR-9 was first found to be upregulated in brain tumors than in tumors of other histological types []. The enhancement of metastasis of miR-9 overexpression has also been found in hepatocellular carcinoma [], head and neck squamous cell carcinoma [], colon cancer [], esophageal squamous cell carcinoma [], breast cancer [,], and cervical cancer []. This result suggests the role of a promoter or onco-miR in tumor development and progression. However, miR-9 is also downregulated in gastric cancer [], pancreatic cancer [], and ovarian cancer [], indicating that a role of anti-miR in tumor progression. Interestingly, Ma et al.reported that miR-9 acted as a metastamiR to promote breast cancer metastasis [], while Lwhmann et al. noted that miR-9 was also transcriptionally downregulated in early breast cancer development []. Moreover, in gastric tumor, Inoue et al. reported that miR-9 was upregulated [], while Zheng et al. indicated that miR-9 functioned as a suppresser miRNA and was downregulated in gastric tumor progression []. The heterogeneity of these tumors or the limited specimens may have caused the highly diverse miR-9 expression even in similar tumors. Whether miR-9 functions as a promoter or suppressor in the progression of various tumors remains obscure. A previous study has demonstrated that TGF-β upregulation of miR-182 expression may promote gallbladder cancer metastasis by targeting CADM1 []. Another study revealed that miR-182 may potentiate TGF-b-induced EMT and metastasis of cancer cells by directly targeting SMAD7 []. TGF-bsignaling pathway plays vital roles in EMT and metastasis of cancer cells. However, the detailed mechanism of miR-9 in promoting the metastasis of the ovarian cancer cell should be further illuminated.

References

[1]

Siegel RNaishadham DJemal A. Cancer statistics, 2013. CA Cancer J Clin 201363(1): 11–30

[2]

Landen CN Jr, Birrer MJSood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 200826(6): 995–1005

[3]

Cho KRShih Ie M. Ovarian cancer. Annu Rev Pathol 20094(1): 287–313

[4]

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004116(2): 281–297

[5]

Slack FJWeidhaas JB. MicroRNA in cancer prognosis. N Engl J Med 2008359(25): 2720–2722

[6]

Croce CMCalin GA. miRNAs, cancer, and stem cell division. Cell 2005122(1): 6–7

[7]

Chen CZLi LLodish HFBartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004303(5654): 83–86

[8]

Ma LYoung JPrabhala HPan EMestdagh PMuth DTeruya-Feldstein JReinhardt FOnder TTValastyan SWestermann FSpeleman FVandesompele JWeinberg RA. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 201012(3): 247–256

[9]

Song YLi JZhu YDai YZeng TLiu LLi JWang HQin YZeng MGuan XYLi Y. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 20145(22): 11669–11680

[10]

Sun ZHan QZhou NWang SLu SBai CZhao RC. MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 20137(5): 884–894

[11]

Zhu LChen HZhou DLi DBai RZheng SGe W. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 201229(2): 1037–1043

[12]

Shiiyama RFukushima SJinnin MYamashita JMiyashita ANakahara SKogi AAoi JMasuguchi SInoue YIhn H. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res 201323(5): 366–372

[13]

Iorio MVVisone RDi Leva GDonati VPetrocca FCasalini PTaccioli CVolinia SLiu CGAlder HCalin GAMenard SCroce CM. MicroRNA signatures in human ovarian cancer. Cancer Res 200767(18): 8699–8707

[14]

Laios AO’Toole SFlavin RMartin CKelly LRing MFinn SPBarrett CLoda MGleeson ND’Arcy TMcGuinness ESheils OSheppard BO’ Leary J. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 20087(1): 35

[15]

Sun CLi NYang ZZhou BHe YWeng DFang YWu PChen PYang XMa DZhou JChen G. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013105(22): 1750–1758

[16]

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 20022(6): 442–454

[17]

Dai YZhou X. Computational methods for the identification of microRNA targets. Open Access Bioinformatics 20102:29–39

[18]

Dweep HSticht CPandey PGretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 201144(5): 839–847

[19]

Liang CCPark AYGuan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 20072(2): 329–333

[20]

Valster ATran NLNakada MBerens MEChan AYSymons M. Cell migration and invasion assays. Methods 200537(2): 208–215

[21]

Weng DSong XXing HMa XXia XWeng YZhou JXu GMeng LZhu TWang SMa D. Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett 2009273(2): 257–265

[22]

Thiery JPAcloque HHuang RYNieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009139(5): 871–890

[23]

Vergara DMerlot BLucot JPCollinet PVinatier DFournier ISalzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010291(1): 59–66

[24]

Hurst DREdmonds MDWelch DR. MetastamiR: the field of metastasis-regulatory microRNA is spreading. Cancer Res 200969(19): 7495–7498

[25]

Deo MYu JYChung KHTippens MTurner DL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 2006235(9): 2538–2548

[26]

Nass DRosenwald SMeiri EGilad STabibian-Keissar HSchlosberg AKuker HSion-Vardy NTobar AKharenko OSitbon ELithwick Yanai GElyakim ECholakh HGibori HSpector YBentwich ZBarshack IRosenfeld N. miR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 200919(3): 375–383

[27]

Luo XFan SHuang WZhai SMa ZLi PSun SYWang X. Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncol Rep 201228(2): 659–667

[28]

Lu MHHuang CCPan MRChen HHHung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 201218(23): 6416–6425

[29]

Gwak JMKim HJKim EJChung YRYun SSeo ANLee HJPark SY. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014147(1): 39–49

[30]

Wilting SMSnijders PJVerlaat WJaspers Avan de Wiel MAvan Wieringen WNMeijer GAKenter GGYi Yle Sage CAgami RMeijer CJSteenbergen RD. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 201332(1): 106–116

[31]

Zheng LQi TYang DQi MLi DXiang XHuang KTong Q. MicroRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 20138(1): e55719

[32]

Omura NLi CPLi AHong SMWalter KJimeno AHidalgo MGoggins M. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 20087(7): 1146–1156

[33]

Lehmann UHasemeier BChristgen MMuller MRomermann DLanger FKreipe H. Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J Pathol 2008214(1): 17–24

[34]

Inoue TIinuma HOgawa EInaba TFukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 201227(6): 1759–1764

[35]

Qiu YLuo XKan TZhang YYu WWei YShen NYi BJiang X. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst 201410(3): 679–685

[36]

Yu JLei RZhuang XLi XLi GLev SSegura MFZhang XHu G. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 20167: 13884

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (363KB)

2416

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/