A novel classification method for aid decision of traditional Chinese patent medicines for stroke treatment

Yufeng Zhao, Bo Liu, Liyun He, Wenjing Bai, Xueyun Yu, Xinyu Cao, Lin Luo, Peijing Rong, Yuxue Zhao, Guozheng Li, Baoyan Liu

PDF(286 KB)
PDF(286 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 432-439. DOI: 10.1007/s11684-017-0511-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel classification method for aid decision of traditional Chinese patent medicines for stroke treatment

Author information +
History +

Abstract

Traditional Chinese patent medicines are widely used to treat stroke because it has good efficacy in the clinical environment. However, because of the lack of knowledge on traditional Chinese patent medicines, many Western physicians, who are accountable for the majority of clinical prescriptions for such medicine, are confused with the use of traditional Chinese patent medicines. Therefore, the aid-decision method is critical and necessary to help Western physicians rationally use traditional Chinese patent medicines. In this paper, Manifold Ranking is employed to develop the aid-decision model of traditional Chinese patent medicines for stroke treatment. First, 115 stroke patients from three hospitals are recruited in the cross-sectional survey. Simultaneously, traditional Chinese physicians determine the traditional Chinese patent medicines appropriate for each patient. Second, particular indicators are explored to characterize the population feature of traditional Chinese patent medicines for stroke treatment. Moreover, these particular indicators can be easily obtained by Western physicians and are feasible for widespread clinical application in the future. Third, the aid-decision model of traditional Chinese patent medicines for stroke treatment is constructed based on Manifold Ranking. Experimental results reveal that traditional Chinese patent medicines can be differentiated. Moreover, the proposed model can obtain high accuracy of aid decision.

Keywords

traditional Chinese patent medicines / stroke / aid decision / data mining / manifold ranking

Cite this article

Download citation ▾
Yufeng Zhao, Bo Liu, Liyun He, Wenjing Bai, Xueyun Yu, Xinyu Cao, Lin Luo, Peijing Rong, Yuxue Zhao, Guozheng Li, Baoyan Liu. A novel classification method for aid decision of traditional Chinese patent medicines for stroke treatment. Front. Med., 2017, 11(3): 432‒439 https://doi.org/10.1007/s11684-017-0511-1

References

[1]
Li S, Ji J. Rational use of Chinese traditional patent medicine. China Mod Med (Zhongguo Dang Dai Yi Yao) 2011; 18(12): 102–104 (in Chinese)
[2]
Wu J, Hu M, Song M, Wu P, Jiang Y. Catalog proprietary varieties of essential drugs listed by the production distribution. China Pharm (Zhongguo Yao Fang) 2010; 21(24): 2214–2218 (in Chinese)
[3]
Yang L. Adverse reaction reports and analysis of 416 cases in a region proprietary. Med Hyg (Yi Yao Wei Sheng) 2015; 1(8): 159–159 (in Chinese)
[4]
Lu L. Chinese traditional patent medicine comparable to antibiotic abuse. Nanfang Daily (Nanfang Ri Bao), August 23, 2011; B01 (in Chinese)
[5]
Guo C, Huang L. Rational application of proprietary Chinese medicines in the treatment of coronary heart disease. Chin J Integr Med Cardio Cerebrovasc Dis (Zhong Xi Yi Jie He Xin Nao Xue Guan Bing Za Zhi) 2016; 14(18): 2131–2133 (in Chinese)
[6]
Wu S. Reason of abuse for Chinese Traditional Patent Medicine. Xinhua Daily Teleg (Xin Hua Mei Ri Dian Xun), August 24, 2011; 01 (in Chinese)
[7]
Wan K. Analysis and unreasonable application of preventive measures in the prescription medicine. Medicine (Yi Yao) 2015; 4(1): 251 (in Chinese)
[8]
Guan Y, Zhou C, Liu J. Problem analysis of Chinese traditional patent medicine made by Western medicine doctors. Chin J Clin Ration Drug Use (Lin Chuang He Li Yong Yao Za Zhi) 2010; 3(13): 61 (in Chinese)
[9]
Li G, Yan S, You M, Sun S, Ou A. Intelligent ZHENG classification of hypertension depending on ML-kNN and information fusion. Evid Based Complement Alternat Med 2012; 2012: 837245 
CrossRef Pubmed Google scholar
[10]
Zhang X. Application of topic model in the TCM clinic. Doctoral dissertation. Beijing Jiaotong University, 2011 (in Chinese)
[11]
Zhang R, Zhou X, Yao N. Herb combination relation of liver tune certification based on association rule. Chin J Info Tradit Chin Med (Zhongguo Zhong Yi Yao Xin Xi Za Zhi) 2010; 17(2): 97–99 (in Chinese)
[12]
Zhou X, Chen S, Liu B, Zhang R, Wang Y, Li P, Guo Y, Zhang H, Gao Z, Yan X. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif Intell Med 2010; 48(2-3): 139–152 
CrossRef Pubmed Google scholar
[13]
Zhao YF, He LY, Liu BY, Li J, Li FY, Huo RL, Jing XH. Syndrome classification based on manifold ranking for viral hepatitis. Chin J Integr Med 2014; 20(5): 394–399
CrossRef Pubmed Google scholar
[14]
Feng Q, Zhou X, Huang H, Yu J, Zhang Y, Tong X, Zhang R, Liu B. A MDP solution for traditional Chinese medicine treatment planning. International Conference of Biomedical Engineering and InformaticsOctober 16–18, 2010, Yantai, China. 2250–2254
[15]
Feng Q. POMDP approximate solution and in Chinese medicine clinic program optimization.  Doctoral dissertation. Beijing Jiaotong University, 2011 (in Chinese)
[16]
Soni J, Ansari U, Sharma D, Soni S. Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int J Comput Appl 2014; 8(17): 43–48
[17]
Wu D, Lin J, Wang P, Wang Y, Lu F. Analysis on composition principles of prescriptions for erectile dysfunction by using traditional Chinese medicine inheritance system. Chin Tradit Patent Med (Zhong Cheng Yao) 2016; 38(4): 755–759 (in Chinese)
[18]
Li Y, Zheng G, Liu L. Treatment rules of Sinomenium acutum by text mining. World Chin Med (Shi Jie Zhong Yi Yao) 2015; 10(6): 823–827 (in Chinese)
[19]
Peng J, Hu J, Liu B. Clinical aid-decision support system developed based on the network information technology. International Conference of Traditional Chinese Medicine EngineeringDecember 6–8, 2006, Shanghai, China. 134–137 (in Chinese)

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81674101 and 81202858), National Key Technology Support Program (No. 2012BAI25B02), Self-selected subject of China Academy of Chinese Medical Sciences (Nos. ZZ05003, ZZ03090, and Z0217), Beijing Key Laboratory of Advanced Information Science Network Technology (No. XDXX1306), and Autonomous Grant from Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences (No. Z254).

Compliance with ethics guidelines

Yufeng Zhao, Bo Liu, Liyun He, Wenjing Bai, Xueyun Yu, Xinyu Cao, Lin Luo, Peijing Rong, Yuxue Zhao, Guozheng Li, and Baoyan Liu declare that they have no conflict of interest. This manuscript involves clinical data from a research protocol and the ethics committee had approved the research protocol.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(286 KB)

Accesses

Citations

Detail

Sections
Recommended

/