Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum

Chunyu Li , Ming Niu , Zhaofang Bai , Congen Zhang , Yanling Zhao , Ruiyu Li , Can Tu , Huifang Li , Jing Jing , Yakun Meng , Zhijie Ma , Wuwen Feng , Jinfa Tang , Yun Zhu , Jinjie Li , Xiaoya Shang , Zhengsheng Zou , Xiaohe Xiao , Jiabo Wang

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 253 -265.

PDF (690KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 253 -265. DOI: 10.1007/s11684-017-0508-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum

Author information +
History +
PDF (690KB)

Abstract

The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent “knock-out” and “knock-in” strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.

Keywords

Polygonum multiflorum / idiosyncratic hepatotoxicity / metabolomics / stilbene / cis-transisomerization

Cite this article

Download citation ▾
Chunyu Li, Ming Niu, Zhaofang Bai, Congen Zhang, Yanling Zhao, Ruiyu Li, Can Tu, Huifang Li, Jing Jing, Yakun Meng, Zhijie Ma, Wuwen Feng, Jinfa Tang, Yun Zhu, Jinjie Li, Xiaoya Shang, Zhengsheng Zou, Xiaohe Xiao, Jiabo Wang. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum. Front. Med., 2017, 11(2): 253-265 DOI:10.1007/s11684-017-0508-9

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Herbs are widely used to prevent and treat diseases without a medical prescription based on the belief that these treatments are considered natural and safe []. However, hepatotoxicity associated with herbal or botanical use is increasingly being recognized as the use of these medicines has become widespread in many countries [,]. The popular Chinese herb Heshouwu (dried root of Polygonum multiflorum Thunb., family Polygonaceae) has been used for thousands of years in China to prevent aging and hair graying. This herb has also been commonly used as herbals and dietary supplements (HDS) in Europe and United States in recent years. Nevertheless, reports of Heshouwu-induced liver injury are increasing []. The China Food and Drug Administration recently warned of the risks of Heshouwu-containing drugs and strengthened the regulations of these products. In fact, the hepatotoxicity of Heshouwu was reported in 1996 in Hong Kong, China [] and in 2006 in the UK by the Medicines and Healthcare Products Regulatory Agency. Despite the significant increase in Heshouwu-induced liver injuries, our previous investigations in suspected clinical patients have revealed that such injuries occur only in a minority of patients and are related to idiosyncratic hepatotoxicity [,]. The hepatotoxicity of Heshouwu and its related preparations (Shou Wu Pian, Shen Min, etc.) have also been summarized and recorded in the LIVERTOX® database, a comprehensive resource for idiosyncratic drug-induced liver injury (IDILI), produced by the National Institute of Diabetes and Digestive and Kidney Diseases and National Library of Medicine [].

Materials and methods

Plants and reagents

Study design

Sample collection and preparation

Constituent “knock-out” and “knock-in”

Assessment of idiosyncratic hepatotoxicity in rats

Metabolomics analysis

Statistical analysis

Results

Transformation of cis-SG in the Heshouwu herbal liquor used by a DILI patient

Compared with a regular Heshouwu sample, a higher content of cis-SG was found in the Heshouwu herbal liquor belonging to a DILI patient (Fig. 1C), which was self-made by soaking Heshouwu in a commercial liquor (alcohol degree= 52% vol), containing about 0.1 g raw Heshouwu per ml liquor. After nearly one month, the patient began to consume it. The patient refused to take any prescription medications, but drank the herbal liquor (40–80 ml once per day) for about two months before he experienced fatigue, poor appetite, and jaundice. The patient was diagnosed with herb-induced liver injury associated to Heshouwu, according to the American College of Gastroenterology clinical guidelines for DILI diagnosis and management [] and the China Association of Chinese Medicine clinical guidelines for diagnosis and treatment of herb-induced liver injury []. Moreover, his detailed information was recorded in the supplementary materials (Supplementary Table 1 and Supplementary Fig. 1). In addition, sunlight transformed trans-SG into cis-SG when an extracted solution of the regular Heshouwu sample was exposed to sunlight (Fig. 1E). We further demonstrated that the pure trans-SG compound in solution was transformed into cis-SG only in quartz, transparent glass or transparent polyethylene bottles, whereas either light shielding or brown glass bottles prevented isomerization (Fig. 1F–1J). Unsurprisingly, the aforementioned Heshouwu DILI patient had stored his Heshouwu liquor in transparent glass on a windowsill exposed to sunlight throughout his course of treatment with the liquor, and he started consuming it after the liquor was exposed to sunlight for about one month. Thus, the evident transformation of the patient’s Heshouwu liquor into cis-SG can be explained. Furthermore, a higher content of cis-SG was also detected in the herb or its relevant Heshouwu-containing preparations, belonging to the actual liver intoxication patients associated with Heshouwu, compared with the general collected Heshouwu samples (unpublished data). These results provided a clinical clue of the relationship between a high level of transformation into cis-SG and liver injury associated with Heshouwu.

A stilbene-containing ethyl acetate (EA) extract displayed comparable idiosyncratic hepatotoxicity to Heshouwu whole extract

Isolated cis-SG displays comparable idiosyncratic hepatotoxicity to the EA extract

Cis-SG alters distinct enriched pathways from trans-SG

Discussion

Based on the idiosyncratic hepatotoxicity phenotype associated with cis-SG versus trans-SG, relevant differentially expressed metabolites biomarkers and enriched pathways were investigated. As shown in Fig. 5 and Supplementary Fig. 6, arginine and ornithine metabolism, vitamin B6 metabolism, and pyrimidine metabolism were the most affected pathways. Previous studies have shown that metabolic disorder of vitamin B6 occurs parallel to major hepatocyte destruction, and patients with liver disease often went hand-in-hand with metabolic defect in vitamin B6 [,]. Other research has revealed that pyrimidine metabolism is closely related to pathological condition of liver [,]. Taking together, we speculated that the perturbation of vitamin B6 metabolism and pyrimidine metabolism were the result of liver damage. Notably, the downregulation of arginine and omithine was more evident in the cis-SG group compared with the trans-SG group, indicating arginine and ornithine metabolism disorders. Previous studies have shown that an early response to inflammation is the conversion of arginine to the cytostatic molecule nitric oxide (NO), and the breakdown of arginine to urea and ornithine by arginase also contributed to inflammatory response [,], potentially explaining the markedly higher inflammation and liver injury observed in the cis-SG group than in the trans-SG group. Moreover, arginase, an important enzyme that can convert arginine into ornithine and urea, has been shown to be inducible in macrophages by LPS []. Arginase is crucially involved in various aspects of inflammation and has been shown either to be responsible for or to participate in, for example, inflammation triggered immune dysfunction, immunosuppression, and immunopathology of infectious diseases []. The disorders of arginine and ornithine metabolism, together with the administration of LPS, were likely to amplify immuno-inflammatory responses and further aggravate liver injury. Associated with the aforementioned immune activation involved in the pathogenesis of liver injury, interactions between the immune and metabolic systems may play a key role in the biological mechanism of cis-SG-induced idiosyncratic hepatotoxicity.

References

[1]

Stickel FPatsenker ESchuppan D. Herbal hepatotoxicity. J Hepatol 200543(5): 901–910 

[2]

Stedman C. Herbal hepatotoxicity. Semin Liver Dis 200222(2): 195–206 

[3]

Teschke REickhoff A. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps. Front Pharmacol 20156: 72 

[4]

Dong QLi NLi QZhang CEFeng WWLi GQLi RYTu CHan XBai ZFZhang YMNiu MMa ZJXiao XHWang JB. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study. Front Pharmacol 20156: 217 

[5]

But PPTomlinson BLee KL. Hepatitis related to the Chinese medicine Shou-wu-pian manufactured from Polygonum multiflorum. Vet Hum Toxicol 199638(4): 280–282

[6]

Wang JMa ZNiu MZhu YLiang QZhao YSong JBai ZZhang YZhang PLi NMeng YLi QQin LTeng GCao JLi BChen SLi YZou ZZhou HXiao X. Evidence chain-based causality identification in herb-induced liver injury: exemplification of a well-known liver-restorative herb Polygonum multiflorum. Front Med 20159(4): 457–467

[7]

Wang JBLi CYZhu YSong HBBai ZFXiao XX. Integrated evidence chain-based identification of Chinese herbal medicine- induced hepatotoxicity and rational usage: exemplification by Polygonum multiflorum (He shou wu). Chin Sci Bull 201661(09): 971–980 (in Chinese)

[8]

Shaw PJGaney PERoth RA. Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci 2010118(1):7–18

[9]

Björnsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch Toxicol 201589(3): 327–334

[10]

Poulsen KLOlivero-Verbel JBeggs KMGaney PERoth RA. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014350(1): 164–170

[11]

Roth RAGaney PE. Animal models of idiosyncratic drug-induced liver  injury—current  status. Crit  Rev  Toxicol  201141(9): 723–739 

[12]

Li CYLi XFTu CLi NMa ZJPang JYJia GLCui HRYou YSong HBDu XXZhao YLWang JBXiao XH. The idiosyncratic hepatotoxicity of Polygonum multiflorum based on endotoxin model. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 201550(1):28–33 (in Chinese)

[13]

Wang JBXiao XHDu XXZou ZSSong HBGuo XX. Identification and early diagnosis for traditional Chinese medicine-induced liver injury based on translational toxicology. China J Chin Materia Medica (Zhongguo Zhong Yao Za Zhi) 201439(1): 5–9 (in Chinese)

[14]

Wu XChen XHuang QFang DLi GZhang G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia 201283(3): 469–475

[15]

Lin CMSingh SBChu PSDempcy ROSchmidt JMPettit GRHamel E. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. Mol Pharmacol 198834(2): 200–208

[16]

Siles RAckley JFHadimani MBHall JJMugabe BEGuddneppanavar RMonk KAChapuis JCPettit GRChaplin DJEdvardsen KTrawick MLGarner CMPinney KG. Combretastatin dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting agents. J Nat Prod 200871(3): 313–320 

[17]

Sun JLHuang XLWu HQHuang F. Determination of content and light stability of cis- and trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-D- glucoside in Radix Polygoni multiflori by HPLC/DAD/MS. Chin Pharm J (Zhongguo Yao Xue Za Zhi) 2009(7):541–544 (in Chinese)

[18]

Chalasani NPHayashi PHBonkovsky HLNavarro VJLee WMFontana RJ; Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 2014109(7): 950–966, quiz 967 

[19]

Xiao XHLi XHZhu YWang JBLi LZhang TLiu CHSun KWYang HSGuo YM. Guideline for diagnosis and treatment of herb-induced liver injury. China J Chin Materia Medica (Zhongguo Zhongyao Zazhi) 2016; (7): 1165–1172

[20]

Luyendyk JPLehman-McKeeman LDNelson DMBhaskaran VMReilly TPCar BDCantor GHDeng XMaddox JFGaney PERoth RA. Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine. J Pharmacol Exp Ther 2006317(2): 635–643

[21]

Sajish MSchimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature 2015519(7543): 370–373

[22]

Langcake PPryce RJ. Production of resveratrol by Vitis vinifera and other members of Vitaceae as a response to infection or injury. Physiol Plant Pathol 19769(1): 77–86 

[23]

Crowell JAKorytko PJMorrissey RLBooth TDLevine BS. Resveratrol-associated renal toxicity. Toxicol Sci 200482(2):614–619

[24]

Minezawa NGordon MS. Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 2011115(27): 7901–7911

[25]

Zaki MABalachandran PKhan SWang MMohammed RHetta MHPasco DSMuhammad I. Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3′5′-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 201376(4): 679–684

[26]

Woods JAHadfield JAPettit GRFox BWMcGown AT. The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br J Cancer 199571(4): 705–711

[27]

Manis JP. Knock out, knock in, knock down—genetically manipulated mice and the Nobel Prize. N Engl J Med 2007357(24): 2426–2429

[28]

Tong CLi PWu NLYan YYing QL. Production of p53 gene knock-out rats by homologous recombination in embryonic stem cells. Nature 2010467(7312): 211–213

[29]

Zhu YLi YGWang YWang LPWang JBWang RLWang LFMeng YKWang ZXXiao XH. Analysis of clinical characteristics in 595 patients with herb-induced liver injury. Chin J Integr Tradit Western Med (Zhongguo Zhong Xi Yi Jie He Za Zhi) 201636(1):44–48 (in Chinese)

[30]

El Kasmi KCAnderson ALDevereaux MWVue PMZhang WSetchell KDKarpen SJSokol RJ. Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci Transl Med 20135(206): 206ra137

[31]

Mitchell DWagner CStone WJWilkinson GRSchenker S. Abnormal regulation of plasma pyridoxal 5′-phosphate in patients with liver disease. Gastroenterology 197671(6): 1043–1049

[32]

Myers BADubick MAReynolds RDRucker RB. Effect of vitamin B-6 (pyridoxine) deficiency on lung elastin cross-linking in perinatal and weanling rat pups. Biochem J 1985229(1): 153–160

[33]

Canellakis ESJaffe JJMantsavinos RKrakow JS. Pyrimidine metabolism. IV. A comparison of normal and regenerating rat liver. J Biol Chem 1959234(8): 2096–2099

[34]

Fausto NBrandt JTKesner L. Possible interactions between the urea cycle and synthesis of pyrimidines and polyamines in regenerating liver. Cancer Res 197535(2): 397–404

[35]

Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 198610(2): 227–238

[36]

Satriano J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines. Amino Acids 200426(4): 321–329

[37]

Corraliza IMSoler GEichmann KModolell M. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 1995206(2): 667–673

[38]

Bronte VZanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 20055(8): 641–654 

[39]

Block  WDWesthoff  MHSteele  BF. Histidine metabolism in the human adult: histidine blood tolerance, and the effect of continued free L-histidine ingestion on the concentration of imidazole compounds in blood and urine. J Nutr 196791(2):189–194

[40]

Machado  MVKruger  LJewell  MLMichelotti  GAPereira Tde  AXie GMoylan CADiehl AM. Vitamin B5 and N-acetylcysteine in nonalcoholic steatohepatitis: a preclinical study in a dietary mouse model. Dig Dis Sci 201661(1):137–148 

[41]

Zizioli  DTiso NGuglielmi  ASaraceno  CBusolin  GGiuliani  RKhatri  D, Monti  EBorsani  GArgenton  FFinazzi  D. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiol Dis 201685:35–48

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (690KB)

Supplementary files

FMD-16274-OF-XXH_suppl_1

3042

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/