Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum

Chunyu Li , Ming Niu , Zhaofang Bai , Congen Zhang , Yanling Zhao , Ruiyu Li , Can Tu , Huifang Li , Jing Jing , Yakun Meng , Zhijie Ma , Wuwen Feng , Jinfa Tang , Yun Zhu , Jinjie Li , Xiaoya Shang , Zhengsheng Zou , Xiaohe Xiao , Jiabo Wang

Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 253 -265.

PDF (690KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (2) : 253 -265. DOI: 10.1007/s11684-017-0508-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum

Author information +
History +
PDF (690KB)

Abstract

The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent “knock-out” and “knock-in” strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.

Keywords

Polygonum multiflorum / idiosyncratic hepatotoxicity / metabolomics / stilbene / cis-transisomerization

Cite this article

Download citation ▾
Chunyu Li, Ming Niu, Zhaofang Bai, Congen Zhang, Yanling Zhao, Ruiyu Li, Can Tu, Huifang Li, Jing Jing, Yakun Meng, Zhijie Ma, Wuwen Feng, Jinfa Tang, Yun Zhu, Jinjie Li, Xiaoya Shang, Zhengsheng Zou, Xiaohe Xiao, Jiabo Wang. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum. Front. Med., 2017, 11(2): 253-265 DOI:10.1007/s11684-017-0508-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stickel FPatsenker ESchuppan D. Herbal hepatotoxicity. J Hepatol 200543(5): 901–910 

[2]

Stedman C. Herbal hepatotoxicity. Semin Liver Dis 200222(2): 195–206 

[3]

Teschke REickhoff A. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps. Front Pharmacol 20156: 72 

[4]

Dong QLi NLi QZhang CEFeng WWLi GQLi RYTu CHan XBai ZFZhang YMNiu MMa ZJXiao XHWang JB. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study. Front Pharmacol 20156: 217 

[5]

But PPTomlinson BLee KL. Hepatitis related to the Chinese medicine Shou-wu-pian manufactured from Polygonum multiflorum. Vet Hum Toxicol 199638(4): 280–282

[6]

Wang JMa ZNiu MZhu YLiang QZhao YSong JBai ZZhang YZhang PLi NMeng YLi QQin LTeng GCao JLi BChen SLi YZou ZZhou HXiao X. Evidence chain-based causality identification in herb-induced liver injury: exemplification of a well-known liver-restorative herb Polygonum multiflorum. Front Med 20159(4): 457–467

[7]

Wang JBLi CYZhu YSong HBBai ZFXiao XX. Integrated evidence chain-based identification of Chinese herbal medicine- induced hepatotoxicity and rational usage: exemplification by Polygonum multiflorum (He shou wu). Chin Sci Bull 201661(09): 971–980 (in Chinese)

[8]

Shaw PJGaney PERoth RA. Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci 2010118(1):7–18

[9]

Björnsson ES. Drug-induced liver injury: an overview over the most critical compounds. Arch Toxicol 201589(3): 327–334

[10]

Poulsen KLOlivero-Verbel JBeggs KMGaney PERoth RA. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014350(1): 164–170

[11]

Roth RAGaney PE. Animal models of idiosyncratic drug-induced liver  injury—current  status. Crit  Rev  Toxicol  201141(9): 723–739 

[12]

Li CYLi XFTu CLi NMa ZJPang JYJia GLCui HRYou YSong HBDu XXZhao YLWang JBXiao XH. The idiosyncratic hepatotoxicity of Polygonum multiflorum based on endotoxin model. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 201550(1):28–33 (in Chinese)

[13]

Wang JBXiao XHDu XXZou ZSSong HBGuo XX. Identification and early diagnosis for traditional Chinese medicine-induced liver injury based on translational toxicology. China J Chin Materia Medica (Zhongguo Zhong Yao Za Zhi) 201439(1): 5–9 (in Chinese)

[14]

Wu XChen XHuang QFang DLi GZhang G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia 201283(3): 469–475

[15]

Lin CMSingh SBChu PSDempcy ROSchmidt JMPettit GRHamel E. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. Mol Pharmacol 198834(2): 200–208

[16]

Siles RAckley JFHadimani MBHall JJMugabe BEGuddneppanavar RMonk KAChapuis JCPettit GRChaplin DJEdvardsen KTrawick MLGarner CMPinney KG. Combretastatin dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting agents. J Nat Prod 200871(3): 313–320 

[17]

Sun JLHuang XLWu HQHuang F. Determination of content and light stability of cis- and trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-D- glucoside in Radix Polygoni multiflori by HPLC/DAD/MS. Chin Pharm J (Zhongguo Yao Xue Za Zhi) 2009(7):541–544 (in Chinese)

[18]

Chalasani NPHayashi PHBonkovsky HLNavarro VJLee WMFontana RJ; Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 2014109(7): 950–966, quiz 967 

[19]

Xiao XHLi XHZhu YWang JBLi LZhang TLiu CHSun KWYang HSGuo YM. Guideline for diagnosis and treatment of herb-induced liver injury. China J Chin Materia Medica (Zhongguo Zhongyao Zazhi) 2016; (7): 1165–1172

[20]

Luyendyk JPLehman-McKeeman LDNelson DMBhaskaran VMReilly TPCar BDCantor GHDeng XMaddox JFGaney PERoth RA. Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine. J Pharmacol Exp Ther 2006317(2): 635–643

[21]

Sajish MSchimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature 2015519(7543): 370–373

[22]

Langcake PPryce RJ. Production of resveratrol by Vitis vinifera and other members of Vitaceae as a response to infection or injury. Physiol Plant Pathol 19769(1): 77–86 

[23]

Crowell JAKorytko PJMorrissey RLBooth TDLevine BS. Resveratrol-associated renal toxicity. Toxicol Sci 200482(2):614–619

[24]

Minezawa NGordon MS. Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 2011115(27): 7901–7911

[25]

Zaki MABalachandran PKhan SWang MMohammed RHetta MHPasco DSMuhammad I. Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3′5′-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 201376(4): 679–684

[26]

Woods JAHadfield JAPettit GRFox BWMcGown AT. The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br J Cancer 199571(4): 705–711

[27]

Manis JP. Knock out, knock in, knock down—genetically manipulated mice and the Nobel Prize. N Engl J Med 2007357(24): 2426–2429

[28]

Tong CLi PWu NLYan YYing QL. Production of p53 gene knock-out rats by homologous recombination in embryonic stem cells. Nature 2010467(7312): 211–213

[29]

Zhu YLi YGWang YWang LPWang JBWang RLWang LFMeng YKWang ZXXiao XH. Analysis of clinical characteristics in 595 patients with herb-induced liver injury. Chin J Integr Tradit Western Med (Zhongguo Zhong Xi Yi Jie He Za Zhi) 201636(1):44–48 (in Chinese)

[30]

El Kasmi KCAnderson ALDevereaux MWVue PMZhang WSetchell KDKarpen SJSokol RJ. Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci Transl Med 20135(206): 206ra137

[31]

Mitchell DWagner CStone WJWilkinson GRSchenker S. Abnormal regulation of plasma pyridoxal 5′-phosphate in patients with liver disease. Gastroenterology 197671(6): 1043–1049

[32]

Myers BADubick MAReynolds RDRucker RB. Effect of vitamin B-6 (pyridoxine) deficiency on lung elastin cross-linking in perinatal and weanling rat pups. Biochem J 1985229(1): 153–160

[33]

Canellakis ESJaffe JJMantsavinos RKrakow JS. Pyrimidine metabolism. IV. A comparison of normal and regenerating rat liver. J Biol Chem 1959234(8): 2096–2099

[34]

Fausto NBrandt JTKesner L. Possible interactions between the urea cycle and synthesis of pyrimidines and polyamines in regenerating liver. Cancer Res 197535(2): 397–404

[35]

Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 198610(2): 227–238

[36]

Satriano J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines. Amino Acids 200426(4): 321–329

[37]

Corraliza IMSoler GEichmann KModolell M. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 1995206(2): 667–673

[38]

Bronte VZanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 20055(8): 641–654 

[39]

Block  WDWesthoff  MHSteele  BF. Histidine metabolism in the human adult: histidine blood tolerance, and the effect of continued free L-histidine ingestion on the concentration of imidazole compounds in blood and urine. J Nutr 196791(2):189–194

[40]

Machado  MVKruger  LJewell  MLMichelotti  GAPereira Tde  AXie GMoylan CADiehl AM. Vitamin B5 and N-acetylcysteine in nonalcoholic steatohepatitis: a preclinical study in a dietary mouse model. Dig Dis Sci 201661(1):137–148 

[41]

Zizioli  DTiso NGuglielmi  ASaraceno  CBusolin  GGiuliani  RKhatri  D, Monti  EBorsani  GArgenton  FFinazzi  D. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiol Dis 201685:35–48

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (690KB)

Supplementary files

FMD-16274-OF-XXH_suppl_1

2892

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/