Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells

Yanlin Zhao, Xiao Zhong, Xiaohong Ou, Huawei Cai, Xiaoai Wu, Rui Huang

PDF(280 KB)
PDF(280 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (1) : 120-128. DOI: 10.1007/s11684-017-0501-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells

Author information +
History +

Abstract

Norepinephrine transporter (NET) transfection leads to significant uptake of iodine-131-labeled metaiodobenzylguanidine (131I-MIBG) in non-neuroendocrine tumors. However, the use of 131I-MIBG is limited by its short retention time in target cells. To prolong the retention of 131I-MIBG in target cells, we infected hepatocarcinoma (HepG2) cells with Lentivirus-encoding human NET and vesicular monoamine transporter 2 (VMAT2) genes to obtain NET-expressing, NET-VMAT2-coexpressing, and negative-control cell lines. We evaluated the uptake and efflux of 131I-MIBG both in vitro and in vivo in mice bearing transfected tumors. NET-expressing and NET-VMAT2-coexpressing cells respectively showed 2.24 and 2.22 times higher 131I-MIBG uptake than controls. Two hours after removal of 131I-MIBG-containing medium, 25.4% efflux was observed in NET-VMAT2-coexpressing cells and 38.6% in NET-expressing cells. In vivo experiments were performed in nude mice bearing transfected tumors; results revealed that NET-VMAT2-coexpressing tumors had longer 131I-MIBG retention time than NET-expressing tumors. Meanwhile, NET-VMAT2-coexpressing and NET-expressing tumors displayed 0.54% and 0.19%, respectively, of the injected dose per gram of tissue 24 h after 131I-MIBG administration. Cotransfection of HepG2 cells with NET and VMAT2 resulted in increased 131I-MIBG uptake and retention. However, the degree of increase was insufficient to be therapeutically effective in target cells.

Keywords

norepinephrine transporter / vesicular monoamine transporter 2 / 131I-MIBG / gene therapy / lentivirus vector

Cite this article

Download citation ▾
Yanlin Zhao, Xiao Zhong, Xiaohong Ou, Huawei Cai, Xiaoai Wu, Rui Huang. Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells. Front. Med., 2017, 11(1): 120‒128 https://doi.org/10.1007/s11684-017-0501-3

References

[1]
Dubois SG, Geier E, Batra V, Yee SW, Neuhaus J, Segal M, Martinez D, Pawel B, Yanik G, Naranjo A, London WB, Kreissman S, Baker D, Attiyeh E, Hogarty MD, Maris JM, Giacomini K, Matthay KK. Evaluation of norepinephrine transporter expression and metaiodobenzylguanidine avidity in neuroblastoma: a report from the Children's Oncology Group. Int J Mol Imaging. 2012;2012:250834
[2]
Carlin S, Mairs RJ, McCluskey AG, Tweddle DA, Sprigg A, Estlin C, Board J, George RE, Ellershaw C, Pearson AD, Lunec J, Montaldo PG, Ponzoni M, van Eck-Smit BL, Hoefnagel CA, van den Brug MD, Tytgat GA, Caron HN. Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res 2003; 9(9): 3338–3344
Pubmed
[3]
Lode HN, Bruchelt G, Seitz G, Gebhardt S, Gekeler V, Niethammer D, Beck J. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of monoamine transporters in neuroblastoma cell lines: correlations to meta-iodobenzylguanidine (MIBG) uptake and tyrosine hydroxylase gene expression. Eur J Cancer 1995; 31(4): 586–590
CrossRef Pubmed Google scholar
[4]
Gonias S, Goldsby R, Matthay KK, Hawkins R, Price D, Huberty J, Damon L, Linker C, Sznewajs A, Shiboski S, Fitzgerald P. Phase II study of high-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol 2009; 27(25): 4162–4168
CrossRef Pubmed Google scholar
[5]
Kang TI, Brophy P, Hickeson M, Heyman S, Evans AE, Charron M, Maris JM. Targeted radiotherapy with submyeloablative doses of 131I-MIBG is effective for disease palliation in highly refractory neuroblastoma. J Pediatr Hematol Oncol 2003; 25(10): 769–773
CrossRef Pubmed Google scholar
[6]
Fitzgerald PA, Goldsby RE, Huberty JP, Price DC, Hawkins RA, Veatch JJ, Dela Cruz F, Jahan TM, Linker CA, Damon L, Matthay KK. Malignant pheochromocytomas and paragangliomas: a phase II study of therapy with high-dose 131I-metaiodobenzylguanidine (131I-MIBG). Ann N Y Acad Sci 2006; 1073(1): 465–490
CrossRef Pubmed Google scholar
[7]
Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, Hawkins RA, Veatch J, Hasegawa B. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med 2001; 42(11): 1713–1721
Pubmed
[8]
DuBois SG, Messina J, Maris JM, Huberty J, Glidden DV, Veatch J, Charron M, Hawkins R, Matthay KK. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol 2004; 22(12): 2452–2460
CrossRef Pubmed Google scholar
[9]
Fullerton NE, Boyd M, Ross SC, Pimlott SL, Babich J, Kirk D, Zalutsky MR, Mairs RJ. Comparison of radiohaloanalogues of meta-iodobenzylguanidine (MIBG) for a combined gene- and targeted radiotherapy approach to bladder carcinoma. Med Chem 2005; 1(6): 611–618
CrossRef Pubmed Google scholar
[10]
Mairs RJ, Ross SC, McCluskey AG, Boyd M. A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo. J Nucl Med 2007; 48(9): 1519–1526
CrossRef Pubmed Google scholar
[11]
Jia ZY, Deng HF, Huang R, Yang YY, Yang XC, Qi ZZ, Ou XH. In vitro and in vivo studies of adenovirus-mediated human norepinephrine transporter gene transduction to hepatocellular carcinoma. Cancer Gene Ther 2011; 18(3): 196–205
CrossRef Pubmed Google scholar
[12]
Altmann A, Kissel M, Zitzmann S, Kübler W, Mahmut M, Peschke P, Haberkorn U. Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 2003; 44(6): 973–980
Pubmed
[13]
Fullerton NE, Mairs RJ, Kirk D, Keith WN, Carruthers R, McCluskey AG, Brown M, Wilson L, Boyd M. Application of targeted radiotherapy/gene therapy to bladder cancer cell lines. Eur Urol 2005; 47(2): 250–256
CrossRef Pubmed Google scholar
[14]
Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther 1999; 6(6): 1147–1152
CrossRef Pubmed Google scholar
[15]
Parsons SM. Transport mechanisms in acetylcholine and monoamine storage. FASEB J 2000; 14(15): 2423–2434
CrossRef Pubmed Google scholar
[16]
Kölby L, Bernhardt P, Levin-Jakobsen AM, Johanson V, Wängberg B, Ahlman H, Forssell-Aronsson E, Nilsson O. Uptake of meta-iodobenzylguanidine in neuroendocrine tumours is mediated by vesicular monoamine transporters. Br J Cancer 2003; 89(7): 1383–1388
CrossRef Pubmed Google scholar
[17]
Temple W, Mendelsohn L, Kim GE, Nekritz E, Gustafson WC, Lin L, Giacomini K, Naranjo A, Van Ryn C, Yanik GA, Kreissman SG, Hogarty M, Matthay KK, DuBois SG. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children’s Oncology Group. Eur J Nucl Med Mol Imaging 2016; 43(3): 474–481
CrossRef Pubmed Google scholar
[18]
Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 1996; 93(10): 5166–5171
CrossRef Pubmed Google scholar
[19]
Liu Y, Schweitzer ES, Nirenberg MJ, Pickel VM, Evans CJ, Edwards RH. Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. J Cell Biol 1994; 127(5): 1419–1433
CrossRef Pubmed Google scholar
[20]
Erickson JD, Eiden LE, Hoffman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA 1992; 89(22): 10993–10997
CrossRef Pubmed Google scholar
[21]
Liu Y, Peter D, Roghani A, Schuldiner S, Privé GG, Eisenberg D, Brecha N, Edwards RH. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 1992; 70(4): 539–551
CrossRef Pubmed Google scholar
[22]
Erickson JD, Eiden LE. Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 1993; 61(6): 2314–2317
CrossRef Pubmed Google scholar
[23]
Gasnier B, Krejci E, Botton D, Massoulié J, Henry JP. Expression of a bovine vesicular monoamine transporter in COS cells. FEBS Lett 1994; 342(3): 225–229
CrossRef Pubmed Google scholar
[24]
Zan LB, Yang YY, Jin JN, Ou XH. Synthesis of 3-trimethylsilylbenzylguanidine as precursor for 125I labelling. Atomic Energy Sci Technol (Yuan Zi Neng Ke Xue Ji Shu) 2007; 41(6): 689–693(in Chinese)
[25]
Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, Burnazi E, Finn RD, Doubrovin M, Blasberg RG. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 2007; 48(5): 827–836
CrossRef Pubmed Google scholar
[26]
Bomanji J, Levison DA, Flatman WD, Horne T, Bouloux PM, Ross G, Britton KE, Besser GM. Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med 1987; 28(6): 973–978
Pubmed
[27]
Robson JA, Sidell N. Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid. Neuroscience 1985; 14(4): 1149–1162
CrossRef Pubmed Google scholar
[28]
Iavarone A, Lasorella A, Servidei T, Riccardi R, Mastrangelo R. Uptake and storage of m-iodobenzylguanidine are frequent neuronal functions of human neuroblastoma cell lines. Cancer Res 1993; 53(2): 304–309
Pubmed
[29]
Taupenot L, Harper KL, O’Connor DT. The chromogranin-secretogranin family. N Engl J Med 2003; 348(12): 1134–1149
CrossRef Pubmed Google scholar
[30]
Stettler H, Beuret N, Prescianotto-Baschong C, Fayard B, Taupenot L, Spiess M. Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells. Biochem J 2009; 418(1): 81–91
CrossRef Pubmed Google scholar
[31]
Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 2003; 278(42): 40581–40589
CrossRef Pubmed Google scholar
[32]
Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M. Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 2004; 279(19): 20242–20249
CrossRef Pubmed Google scholar

Acknowledgements

We thank Yuanyou Yang, PhD, for helping in the preparation of 131I-MIBG. This study was funded by the National Natural Science Foundation of China (No. 81271602).

Compliance with ethics guidelines

Yanlin Zhao, Xiao Zhong, Xiaohong Ou, Huawei Cai, Xiaoai Wu, and Rui Huang declare no conflict of interest that would prejudice their impartiality. This article does not contain any studies with human participants. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(280 KB)

Accesses

Citations

Detail

Sections
Recommended

/