Translational initiatives in thrombolytic therapy

Melvin E. Klegerman

PDF(395 KB)
PDF(395 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (1) : 1-19. DOI: 10.1007/s11684-017-0497-8
REVIEW
REVIEW

Translational initiatives in thrombolytic therapy

Author information +
History +

Abstract

Once thrombi have formed as part of the pathology defining myocardial infarction, ischemic stroke, peripheral arterial disease, deep venous thrombosis or other embolic disorders, the only clinically meaningful thrombolytic agents available for reversing the thrombogenic process are various plasminogen activators. These agents are enzymes that reverse fibrin polymerization underlying the coagulation process by converting endogenous plasminogen to plasmin, which cleaves the fibrin network to form increasingly smaller protein fragments, a process known as fibrinolysis. For the most part, the major clinically used thrombolytics, tissue plasminogen activator, urokinase and streptokinase, as well as the experimentally investigated agent staphylokinase, are the products of recombinant DNA technology, which permits molecular optimization of clinical efficacy. In all cases of molecular optimization and targeting, however, the primary challenge of thrombolytic therapy remains hemorrhagic side effects, which are especially devastating when they occur intracerebrally. Currently, the best strategy to ameliorate this adverse effect is nanoparticulate encapsulation or complexation, and many strategies of this sort are being actively pursued. This review summarizes the variety of targeted and untargeted thrombolytic formulations that have been investigated in preclinical studies.

Keywords

thrombolytics / nanomedicine / plasminogen activators

Cite this article

Download citation ▾
Melvin E. Klegerman. Translational initiatives in thrombolytic therapy. Front. Med., 2017, 11(1): 1‒19 https://doi.org/10.1007/s11684-017-0497-8

References

[1]
Smalling RW. Molecular biology of plasminogen activators: what are the clinical implications of drug design? Am J Cardiol 1996; 78(12 12A): 2–7
CrossRef Pubmed Google scholar
[2]
Nordt TK, Bode C. Thrombolysis: newer thrombolytic agents and their role in clinical medicine. Heart 2003; 89(11): 1358–1362
CrossRef Pubmed Google scholar
[3]
Van de Werf FJ. The ideal fibrinolytic: can drug design improve clinical results? Eur Heart J 1999; 20(20): 1452–1458
CrossRef Pubmed Google scholar
[4]
Al-Shwafi KA, de Meester A, Pirenne B, Col JJ. Comparative fibrinolytic activity of front-loaded alteplase and the single-bolus mutants tenecteplase and lanoteplase during treatment of acute myocardial infarction. Am Heart J 2003; 145(2): 217–225
CrossRef Pubmed Google scholar
[5]
Onundarson PT, Francis CW, Marder VJ. Depletion of plasminogen in vitro or during thrombolytic therapy limits fibrinolytic potential. J Lab Clin Med 1992; 120(1): 120–128
Pubmed
[6]
Sakharov DV, Rijken DC. Superficial accumulation of plasminogen during plasma clot lysis. Circulation 1995; 92(7): 1883–1890
CrossRef Pubmed Google scholar
[7]
Novokhatny V, Taylor K, Zimmerman TP. Thrombolytic potency of acid-stabilized plasmin: superiority over tissue-type plasminogen activator in an in vitro model of catheter-assisted thrombolysis. J Thromb Haemost 2003; 1(5): 1034–1041
CrossRef Pubmed Google scholar
[8]
El-Menyar AA, Altamimi OM, Gomaa MM, Dabdoob W, Abbas AA, Abdel Rahman MO, Bener A, Albinali HA. Clinical and biochemical predictors affect the choice and the short-term outcomes of different thrombolytic agents in acute myocardial infarction. Coron Artery Dis 2006; 17(5): 431–437
CrossRef Pubmed Google scholar
[9]
Jänicke F, Schmitt M, Pache L, Ulm K, Harbeck N, Höfler H, Graeff H. Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 1993; 24(3): 195–208
CrossRef Pubmed Google scholar
[10]
Wessels MR. Regulation of virulence factor expression in group A streptococcus. Trends Microbiol 1999; 7(11): 428–430
CrossRef Pubmed Google scholar
[11]
White HD, Van de Werf FJ. Thrombolysis for acute myocardial infarction. Circulation 1998; 97(16): 1632–1646
CrossRef Pubmed Google scholar
[12]
Malke H, Ferretti JJ. Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc Natl Acad Sci USA 1984; 81(11): 3557–3561
CrossRef Pubmed Google scholar
[13]
Castellino FJ. Recent advances in the chemistry of the fibrinolytic system. Chem Rev 1981; 81(5): 431–446
CrossRef Google scholar
[14]
Jennings K. Antibodies to streptokinase. BMJ 1996; 312(7028): 393–394
CrossRef Pubmed Google scholar
[15]
Lee HS. How safe is the readministration of streptokinase? Drug Saf 1995; 13(2): 76–80
CrossRef Pubmed Google scholar
[16]
Wu XC, Ye R, Duan Y, Wong SL. Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol 1998; 64(3): 824–829
Pubmed
[17]
Banerjee A, Chisti Y, Banerjee UC. Streptokinase—a clinically useful thrombolytic agent. Biotechnol Adv 2004; 22(4): 287–307
CrossRef Pubmed Google scholar
[18]
Smith RA, Dupe RJ, English PD, Green J. Fibrinolysis with acyl-enzymes: a new approach to thrombolytic therapy. Nature 1981; 290(5806): 505–508
CrossRef Pubmed Google scholar
[19]
Shi GY, Chang BI, Su SW, Young KC, Wu DH, Chang LC, Tsai YS, Wu HL. Preparation of a novel streptokinase mutant with improved stability. Thromb Haemost 1998; 79(5): 992–997
Pubmed
[20]
Pratap J, Rajamohan G, Dikshit KL. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 2000; 53(4): 469–475
CrossRef Pubmed Google scholar
[21]
Koide A, Suzuki S, Kobayashi S. Preparation of polyethylene glycol-modified streptokinase with disappearance of binding ability towards anti-serum and retention of activity. FEBS Lett 1982; 143(1): 73–76
CrossRef Pubmed Google scholar
[22]
Rajagopalan S, Gonias SL, Pizzo SV. A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function. J Clin Invest 1985; 75(2): 413–419
CrossRef Pubmed Google scholar
[23]
Torrèns I, Ojalvo AG, Seralena A, Hayes O, de la Fuente J. A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunol Lett 2000; 70(3): 213–218PMID:10656677
CrossRef Google scholar
[24]
MacFarlane RG, Pilling J. Fibrinolytic activity of normal urine. Nature 1947; 159(4049): 779
CrossRef Pubmed Google scholar
[25]
Williams JRB. The fibrinolytic activity of urine. Br J Exper Pathol 1951; 32:530–537
[26]
Collen D, Lijnen HR. Thrombolytic agents. Thromb Haemost 2005; 93(4): 627–630
Pubmed
[27]
Bernik MB. Increased plasminogen activator (urokinase) in tissue culture after fibrin deposition. J Clin Invest 1973; 52(4): 823–834
CrossRef Pubmed Google scholar
[28]
Nolan C, Hall LS, Barlow GH, Tribby II. Plasminogen activator from human embryonic kidney cell cultures. Evidence for a proactivator. Biochim Biophys Acta 1977; 496(2): 384–400
CrossRef Pubmed Google scholar
[29]
Collen D. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost 1980; 43(2): 77–89
Pubmed
[30]
Crippa MP. Urokinase-type plasminogen activator. Int J Biochem Cell Biol 2007; 39(4): 690–694
CrossRef Pubmed Google scholar
[31]
Rijken DC. Structure/function relationships of t-PA. In: Kluft C. Tissue-type Plasminogen Activator (t-PA): Physiological and Clincial Aspects. Boca Raton, FL: CRC Press, Inc., 1988:101–122
[32]
Testa JE, Quigley JP. The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev 1990; 9(4): 353–367
CrossRef Pubmed Google scholar
[33]
Franco P, Vocca I, Carriero MV, Alfano D, Cito L, Longanesi-Cattani I, Grieco P, Ossowski L, Stoppelli MP. Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and αv β5 integrin. J Cell Sci 2006; 119(Pt 16): 3424–3434PMID:16882693
CrossRef Google scholar
[34]
Irigoyen JP, Muñoz-Cánoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56(1-2): 104–132
CrossRef Pubmed Google scholar
[35]
Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 2003; 22(2-3): 205–222
CrossRef Pubmed Google scholar
[36]
Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem 2006; 281(26): 17758–17767
CrossRef Pubmed Google scholar
[37]
Collen D, Lijnen HR. Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2004; 2(4): 541–546
CrossRef Pubmed Google scholar
[38]
Bachmann F, Kruithof IE. Tissue plasminogen activator: chemical and physiological aspects. Semin Thromb Hemost 1984; 10(1): 6–17
CrossRef Pubmed Google scholar
[39]
Verheijen JH, Caspers MP, Chang GT, de Munk GA, Pouwels PH, Enger-Valk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J 1986; 5(13): 3525–3530
Pubmed
[40]
Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257(6): 2912–2919
Pubmed
[41]
Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704(3): 461–469
CrossRef Pubmed Google scholar
[42]
Bringmann P, Gruber D, Liese A, Toschi L, Krätzchmar J, Schleuning WD, Donner P. Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem 1995; 270(43): 25596–25603
CrossRef Pubmed Google scholar
[43]
Nesheim M, Fredenburgh JC, Larsen GR. The dissociation constants and stoichiometries of the interactions of Lys-plasminogen and chloromethyl ketone derivatives of tissue plasminogen activator and the variant delta FEIX with intact fibrin. J Biol Chem 1990; 265(35): 21541–21548
Pubmed
[44]
Angles-Cano E. A spectrophotometric solid-phase fibrin-tissue plasminogen activator activity assay (SOFIA-tPA) for high-fibrin-affinity tissue plasminogen activators. Anal Biochem 1986; 153(2): 201–210
CrossRef Pubmed Google scholar
[45]
Tsurupa G, Medved L. Fibrinogen alpha C domains contain cryptic plasminogen and tPA binding sites. Ann N Y Acad Sci 2001; 936(1): 328–330
CrossRef Pubmed Google scholar
[46]
Klegerman ME, Zou Y, McPherson DD. Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res 2008; 18(2): 95–112
CrossRef Pubmed Google scholar
[47]
Tiukinhoy-Laing SD, Buchanan K, Parikh D, Huang S, MacDonald RC, McPherson DD, Klegerman ME. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 2007; 15(2): 109–114
CrossRef Pubmed Google scholar
[48]
Schielen WJ, Adams HP, van Leuven K, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence γ-(312-324) is a fibrin-specific epitope. Blood 1991; 77(10): 2169–2173
Pubmed
[49]
Schielen WJ, Adams HP, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A α-(154-159) of fibrinogen is capable of accelerating the t-PA catalysed activation of plasminogen. Blood Coagul Fibrinolysis 1991; 2(3): 465–470
CrossRef Pubmed Google scholar
[50]
Schielen WJ, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A α-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci USA 1989; 86(22): 8951–8954
CrossRef Pubmed Google scholar
[51]
Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci 2001; 936(1): 237–246
CrossRef Pubmed Google scholar
[52]
Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry 2000; 39(51): 15730–15741
CrossRef Pubmed Google scholar
[53]
Grailhe P, Nieuwenhuizen W, Anglés-Cano E. Study of tissue-type plasminogen activator binding sites on fibrin using distinct fragments of fibrinogen. Eur J Biochem 1994; 219(3): 961–967
CrossRef Pubmed Google scholar
[54]
Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen gamma-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J 1992; 283(Pt 1): 187–191
CrossRef Pubmed Google scholar
[55]
Hurtado M, Lozano JJ, Castellanos E, López-Fernández LA, Harshman K, Martínez-A C, Ortiz AR, Thomson TM, Paciucci R. Activation of the epidermal growth factor signalling pathway by tissue plasminogen activator in pancreas cancer cells. Gut 2007; 56(9): 1266–1274
CrossRef Pubmed Google scholar
[56]
Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983; 301(5897): 214–221
CrossRef Pubmed Google scholar
[57]
Wallén P, Pohl G, Bergsdorf N, Rånby M, Ny T, Jörnvall H. Purification and characterization of a melanoma cell plasminogen activator. Eur J Biochem 1983; 132(3): 681–686
CrossRef Pubmed Google scholar
[58]
Strassburger W, Wollmer A, Pitts JE, Glover ID, Tickle IJ, Blundell TL, Steffens GJ, Günzler WA, Otting F, Flohé L. Adaptation of plasminogen activator sequences to known protease structures. FEBS Lett 1983; 157(2): 219–223
CrossRef Pubmed Google scholar
[59]
Kaneko M, Sakata Y, Matsuda M, Mimuro J. Interactions between the finger and kringle-2 domains of tissue-type plasminogen activator and plasminogen activator inhibitor-1. J Biochem 1992; 111(2): 244–248
Pubmed
[60]
Ibarra CA, Blouse GE, Christian TD, Shore JD. The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition. J Biol Chem 2004; 279(5): 3643–3650
CrossRef Pubmed Google scholar
[61]
Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 1989; 339(6227): 721–724
CrossRef Pubmed Google scholar
[62]
Rijken DC, Emeis JJ, Gerwig GJ. On the composition and function of the carbohydrate moiety of tissue-type plasminogen activator from human melanoma cells. Thromb Haemost 1985; 54(4): 788–791
Pubmed
[63]
Pohl G, Källström M, Bergsdorf N, Wallén P, Jörnvall H. Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. Biochemistry 1984; 23(16): 3701–3707
CrossRef Pubmed Google scholar
[64]
Emeis JJ, van den Hoogen CM, Jense D. Hepatic clearance of tissue-type plasminogen activator in rats. Thromb Haemost 1985; 54(3): 661–664
Pubmed
[65]
Fuchs HE, Berger H Jr, Pizzo SV. Catabolism of human tissue plasminogen activator in mice. Blood 1985; 65(3): 539–544
Pubmed
[66]
Little SP, Bang NU, Harms CS, Marks CA, Mattler LE. Functional properties of carbohydrate-depleted tissue plasminogen activator. Biochemistry 1984; 23(25): 6191–6195
CrossRef Pubmed Google scholar
[67]
Rånby M, Bergsdorf N, Pohl G, Wallén P. Isolation of two variants of native one-chain tissue plasminogen activator. FEBS Lett 1982; 146(2): 289–292
CrossRef Pubmed Google scholar
[68]
Zamarron C, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by natural and recombinant tissue-type plasminogen activator. J Biol Chem 1984; 259(4): 2080–2083
Pubmed
[69]
Collen D, Stassen JM, Marafino BJ Jr, Builder S, De Cock F, Ogez J, Tajiri D, Pennica D, Bennett WF, Salwa J, . Biological properties of human tissue-type plasminogen activator obtained by expression of recombinant DNA in mammalian cells. J Pharmacol Exp Ther 1984; 231(1): 146–152
Pubmed
[70]
TIMI Study Group. The thrombolysis in myocardial infarction (TIMI) trial. Phase I findings. N Engl J Med 1985; 312(14): 932–936
CrossRef Pubmed Google scholar
[71]
The GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329(10): 673–682PMID:8204123
CrossRef Google scholar
[72]
The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993; 329(22): 1615–1622
CrossRef Pubmed Google scholar
[73]
Cannon CP. Advances in the medical management of acute coronary syndromes. J Thromb Thrombolysis 1999; 7(2): 171–189
CrossRef Pubmed Google scholar
[74]
Katzan IL, Hammer MD, Hixson ED, Furlan AJ, Abou-Chebl A, Nadzam DM; Cleveland Clinic Health System Stroke Quality Improvement Team. Utilization of intravenous tissue plasminogen activator for acute ischemic stroke. Arch Neurol 2004; 61(3): 346–350PMID:15023810
CrossRef Google scholar
[75]
Smith WS. Technology Insight: recanalization with drugs and devices during acute ischemic stroke. Nat Clin Pract Neurol 2007; 3(1): 45–53
CrossRef Pubmed Google scholar
[76]
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333(24): 1581–1587PMID:7477192
CrossRef Google scholar
[77]
Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology 2001; 56(8): 1015–1020
CrossRef Pubmed Google scholar
[78]
Kleindorfer D, Kissela B, Schneider A, Woo D, Khoury J, Miller R, Alwell K, Gebel J, Szaflarski J, Pancioli A, Jauch E, Moomaw C, Shukla R, Broderick JP; Neuroscience Institute. Eligibility for recombinant tissue plasminogen activator in acute ischemic stroke: a population-based study. Stroke 2004; 35(2): e27–e29PMID:14739423
CrossRef Google scholar
[79]
Kwan J, Hand P, Sandercock P. A systematic review of barriers to delivery of thrombolysis for acute stroke. Age Ageing 2004; 33(2): 116–121
CrossRef Pubmed Google scholar
[80]
Brown DL, Barsan WG, Lisabeth LD, Gallery ME, Morgenstern LB. Survey of emergency physicians about recombinant tissue plasminogen activator for acute ischemic stroke. Ann Emerg Med 2005; 46(1): 56–60
CrossRef Pubmed Google scholar
[81]
Liang BA, Lew R, Zivin JA. Review of tissue plasminogen activator, ischemic stroke, and potential legal issues. Arch Neurol 2008; 65(11): 1429–1433
CrossRef Pubmed Google scholar
[82]
Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke 2003; 34(12): 2847–2850
CrossRef Pubmed Google scholar
[83]
Berkowitz SD, Granger CB, Pieper KS, Lee KL, Gore JM, Simoons M, Armstrong PW, Topol EJ, Califf RM; The Global Utilization of Streptokinase and Tissue Plasminogen activator for Occluded coronary arteries (GUSTO) I Investigators. Incidence and predictors of bleeding after contemporary thrombolytic therapy for myocardial infarction. Circulation 1997; 95(11): 2508–2516PMID:9184581
CrossRef Google scholar
[84]
Califf RM, Topol EJ, George BS, Boswick JM, Abbottsmith C, Sigmon KN, Candela R, Masek R, Kereiakes D, O’Neill WW, Stack RS, Stump D. Hemorrhagic complications associated with the use of intravenous tissue plasminogen activator in treatment of acute myocardial infarction. Am J Med 1988; 85(3): 353–359
CrossRef Pubmed Google scholar
[85]
Yadav YR, Mukerji G, Shenoy R, Basoor A, Jain G, Nelson A. Endoscopic management of hypertensive intraventricular haemorrhage with obstructive hydrocephalus. BMC Neurol 2007; 7(1): 1
CrossRef Pubmed Google scholar
[86]
Wu H, Zhang Z, Hu X, Zhao R, Song Y, Ban X, Qi J, Wang J. Dynamic changes of inflammatory markers in brain after hemorrhagic stroke in humans: a postmortem study. Brain Res 2010; 1342: 111–117
CrossRef Pubmed Google scholar
[87]
IMS Study Investigators. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: the Interventional Management of Stroke Study. Stroke 2004; 35(4): 904–911
CrossRef Pubmed Google scholar
[88]
Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, Montaner J, Saqqur M, Demchuk AM, Moyé LA, Hill MD, Wojner AW; CLOTBUST Investigators. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004; 351(21): 2170–2178PMID:15548777
CrossRef Google scholar
[89]
Donnan GA, Davis SM, Parsons MW, Ma H, Dewey HM, Howells DW. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat Rev Neurol 2011; 7(7): 400–409
CrossRef Pubmed Google scholar
[90]
Martin U, Kohnert U, Stern A, Popp F, Fischer S. Comparison of the recombinant Escherichia coli-produced protease domain of tissue-type plasminogen activator with alteplase, reteplase and streptokinase in a canine model of coronary artery thrombolysis. Thromb Haemost 1996; 76(6): 1096–1101
Pubmed
[91]
Kohnert U, Hellerbrand K, Martin U, Stern A, Popp F, Fischer S. The recombinant Escherichia coli-derived protease-domain of tissue-type plasminogen activator is a potent and fibrin specific fibrinolytic agent. Fibrinolysis 1996; 10(2): 93–102
CrossRef Google scholar
[92]
Dundar Y, Hill R, Dickson R, Walley T. Comparative efficacy of thrombolytics in acute myocardial infarction: a systematic review. QJM 2003; 96(2): 103–113
CrossRef Pubmed Google scholar
[93]
Llevadot J, Giugliano RP, Antman EM. Bolus fibrinolytic therapy in acute myocardial infarction. JAMA 2001; 286(4): 442–449
CrossRef Pubmed Google scholar
[94]
Shaw GJ, Meunier JM, Lindsell CJ, Holland CK. Tissue plasminogen activator concentration dependence of 120 kHz ultrasound-enhanced thrombolysis. Ultrasound Med Biol 2008; 34(11): 1783–1792
CrossRef Pubmed Google scholar
[95]
Behnke D, Gerlach D. Cloning and expression in Escherichia coli, Bacillus subtilis, and Streptococcus sanguis of a gene for staphylokinase—a bacterial plasminogen activator. Mol Gen Genet 1987; 210(3): 528–534
CrossRef Pubmed Google scholar
[96]
Collen D, Zhao ZA, Holvoet P, Marynen P. Primary structure and gene structure of staphylokinase. Fibrinolysis 1992; 6(4): 226–231
CrossRef Google scholar
[97]
Laroche Y, Heymans S, Capaert S, De Cock F, Demarsin E, Collen D. Recombinant staphylokinase variants with reduced antigenicity due to elimination of B-lymphocyte epitopes. Blood 2000; 96(4): 1425–1432
Pubmed
[98]
Armstrong PW, Burton JR, Palisaitis D, Thompson CR, Van de Werf F, Rose B, Collen D, Teo KK. Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS). Am Heart J 2000; 139(5): 820–823
CrossRef Pubmed Google scholar
[99]
Ntimenou V, Mourtas S, Christodoulakis EV, Tsilimbaris M, Antimisiaris SG. Stability of protein-encapsulating DRV liposomes after freeze-drying: A study with BSA and t-PA. J Liposome Res 2006; 16(4): 403–416
CrossRef Pubmed Google scholar
[100]
Soeda S, Kakiki M, Shimeno H, Nagamatsu A. Some properties of tissue-type plasminogen activator reconstituted onto phospholipid and/or glycolipid vesicles. Biochem Biophys Res Commun 1987; 146(1): 94–100
CrossRef Pubmed Google scholar
[101]
Heeremans JL, Gerritsen HR, Meusen SP, Mijnheer FW, Gangaram Panday RS, Prevost R, Kluft C, Crommelin DJ. The preparation of tissue-type Plasminogen Activator (t-PA) containing liposomes: entrapment efficiency and ultracentrifugation damage. J Drug Target 1995; 3(4): 301–310
CrossRef Pubmed Google scholar
[102]
Heeremans JL, Prevost R, Bekkers ME, Los P, Emeis JJ, Kluft C, Crommelin DJ. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost 1995; 73(3): 488–494
Pubmed
[103]
Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 2009; 30(29): 5751–5756
CrossRef Pubmed Google scholar
[104]
Han SB, Baek SH, Park JS, Yang HK, Kim JY, Kim CK, Hwang JM. Effect of subconjunctivally injected liposome-encapsulated tissue plasminogen activator on the absorption rate of subconjunctival hemorrhages in rabbits. Cornea 2011; 30(12): 1455–1460
CrossRef Pubmed Google scholar
[105]
Absar S, Choi S, Ahsan F, Cobos E, Yang VC, Kwon YM. Preparation and characterization of anionic oligopeptide-modified tissue plasminogen activator for triggered delivery: an approach for localized thrombolysis. Thromb Res 2013; 131(3): e91–e99
CrossRef Pubmed Google scholar
[106]
Absar S, Choi S, Yang VC, Kwon YM. Heparin-triggered release of camouflaged tissue plasminogen activator for targeted thrombolysis. J Control Release 2012; 157(1): 46–54
CrossRef Pubmed Google scholar
[107]
Holt B, Gupta AS. Streptokinase loading in liposomes for vascular targeted nanomedicine applications: encapsulation efficiency and effects of processing. J Biomater Appl 2012; 26(5): 509–527
CrossRef Pubmed Google scholar
[108]
Kim IS, Choi HG, Choi HS, Kim BK, Kim CK. Prolonged systemic delivery of streptokinase using liposome. Arch Pharm Res 1998; 21(3): 248–252
CrossRef Pubmed Google scholar
[109]
Erdoğan S, Ozer AY, Volkan B, Caner B, Bilgili H. Thrombus localization by using streptokinase containing vesicular systems. Drug Deliv 2006; 13(4): 303–309
CrossRef Pubmed Google scholar
[110]
Perkins WR, Vaughan DE, Plavin SR, Daley WL, Rauch J, Lee L, Janoff AS. Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 1997; 77(6): 1174–1178
Pubmed
[111]
Nguyen PD, O’Rear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R. Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ Res 1990; 66(3): 875–878
CrossRef Pubmed Google scholar
[112]
Wang X, Inapagolla R, Kannan S, Lieh-Lai M, Kannan RM. Synthesis, characterization, and in vitro activity of dendrimer-streptokinase conjugates. Bioconjug Chem 2007; 18(3): 791–799
CrossRef Pubmed Google scholar
[113]
Leach JK, Patterson E, O’Rear EA. Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost 2004; 2(9): 1548–1555
CrossRef Pubmed Google scholar
[114]
Erdoğan S, Ozer AY, Bilgili H. In vivo behaviour of vesicular urokinase. Int J Pharm 2005; 295(1-2): 1–6
CrossRef Pubmed Google scholar
[115]
Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent. Ultrasound Med Biol 2008; 34(9): 1421–1433
CrossRef Pubmed Google scholar
[116]
Alexandrov AV, Mikulik R, Ribo M, Sharma VK, Lao AY, Tsivgoulis G, Sugg RM, Barreto A, Sierzenski P, Malkoff MD, Grotta JC. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008; 39(5): 1464–1469
CrossRef Pubmed Google scholar
[117]
Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabín J. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006; 37(2): 425–429
CrossRef Pubmed Google scholar
[118]
Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, Sedlaczek O, Koroshetz WJ, Hennerici MG. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 2005; 36(7): 1441–1446
CrossRef Pubmed Google scholar
[119]
Ren ST, Zhang H, Wang YW, Jing BB, Li YX, Liao YR, Kang XN, Zang WJ, Wang B. The preparation of a new self-made microbubble-loading urokinase and its thrombolysis combined with low-frequency ultrasound in vitro. Ultrasound Med Biol 2011; 37(11): 1828–1837
CrossRef Pubmed Google scholar
[120]
Francis CW. Ultrasound-enhanced thrombolysis. Echocardiography 2001; 18(3): 239–246
CrossRef Pubmed Google scholar
[121]
Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release 2010; 147(2): 269–277
CrossRef Pubmed Google scholar
[122]
Kawata H, Uesugi Y, Soeda T, Takemoto Y, Sung JH, Umaki K, Kato K, Ogiwara K, Nogami K, Ishigami K, Horii M, Uemura S, Shima M, Tabata Y, Saito Y. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J Am Coll Cardiol 2012; 60(24): 2550–2557
CrossRef Pubmed Google scholar
[123]
Gupta AS, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE. RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 2005; 93(1): 106–114
Pubmed
[124]
Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, Gupta AS. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 2008; 29(11): 1676–1685
CrossRef Pubmed Google scholar
[125]
Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm 2011; 403(1-2): 254–261
CrossRef Pubmed Google scholar
[126]
Wang SS, Chou NK, Chung TW. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study. J Biomed Mater Res A 2009; 91(3): 753–761
CrossRef Pubmed Google scholar
[127]
Mu Y, Li L, Ayoufu G. Experimental study of the preparation of targeted microbubble contrast agents carrying urokinase and RGDS. Ultrasonics 2009; 49(8): 676–681
CrossRef Pubmed Google scholar
[128]
Hua X, Liu P, Gao YH, Tan KB, Zhou LN, Liu Z, Li X, Zhou SW, Gao YJ. Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 2010; 30(1): 29–35
CrossRef Pubmed Google scholar
[129]
Hua X, Zhou L, Liu P, He Y, Tan K, Chen Q, Gao Y, Gao Y.In vivo thrombolysis with targeted microbubbles loading tissue plasminogen activator in a rabbit femoral artery thrombus model. J Thromb Thrombolysis 2014; 38(1): 57–64
CrossRef Pubmed Google scholar
[130]
Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res 2013; 30(6): 1663–1676
CrossRef Pubmed Google scholar
[131]
Absar S, Kwon YM, Ahsan F. Bio-responsive delivery of tissue plasminogen activator for localized thrombolysis. J Control Release 2014; 177: 42–50
CrossRef Pubmed Google scholar
[132]
Jun CD, Shimaoka M, Carman CV, Takagi J, Springer TA. Dimerization and the effectiveness of ICAM-1 in mediating LFA-1-dependent adhesion. Proc Natl Acad Sci USA 2001; 98(12): 6830–6835
CrossRef Pubmed Google scholar
[133]
Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006; 27(30): 5307–5314
CrossRef Pubmed Google scholar
[134]
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13(3): 159–175
CrossRef Pubmed Google scholar
[135]
Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013; 339(6116): 161–166
CrossRef Pubmed Google scholar
[136]
Demos SM, Dagar S, Klegerman M, Nagaraj A, McPherson DD, Onyuksel H. In vitro targeting of acoustically reflective immunoliposomes to fibrin under various flow conditions. J Drug Target 1998; 5(6): 507–518
CrossRef Pubmed Google scholar
[137]
Klegerman ME, Huang S, Parikh D, Martinez J, Demos SM, Onyuksel HA, McPherson DD. Lipid contribution to the affinity of antigen association with specific antibodies conjugated to liposomes. Biochim Biophys Acta 2007; 1768(7): 1703–1716
CrossRef Pubmed Google scholar
[138]
Zimarino M, D’Andreamatteo M, Waksman R, Epstein SE, De Caterina R. The dynamics of the coronary collateral circulation. Nat Rev Cardiol 2014; 11(4): 191–197
CrossRef Pubmed Google scholar
[139]
Bode C, Meinhardt G, Runge MS, Freitag M, Nordt T, Arens M, Newell JB, Kübler W, Haber E. Platelet-targeted fibrinolysis enhances clot lysis and inhibits platelet aggregation. Circulation 1991; 84(2): 805–813
CrossRef Pubmed Google scholar
[140]
Xie F, Lof J, Matsunaga T, Zutshi R, Porter TR. Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions. Circulation 2009; 119(10): 1378–1385
CrossRef Pubmed Google scholar
[141]
Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012; 337(6095): 738–742
CrossRef Pubmed Google scholar
[142]
Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, Götberg M, Olsson T. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 2010; 31(36): 9499–9510
CrossRef Pubmed Google scholar
[143]
Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int J Nanomed 2012; 7:5137–5149
[144]
Yang HW, Hua MY, Lin KJ, Wey SP, Tsai RY, Wu SY, Lu YC, Liu HL, Wu T, Ma YH. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis. Int J Nanomed 2012; 7:5159–5173
[145]
Torno MD, Kaminski MD, Xie Y, Meyers RE, Mertz CJ, Liu X, O’Brien WD Jr, Rosengart AJ. Improvement of in vitro thrombolysis employing magnetically-guided microspheres. Thromb Res 2008; 121(6): 799–811
CrossRef Pubmed Google scholar
[146]
Wang M, Zhang J, Yuan Z, Yang W, Wu Q, Gu H. Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles. J Biomed Nanotechnol 2012; 8(4): 624–632
CrossRef Pubmed Google scholar
[147]
Vaidya B, Agrawal GP, Vyas SP. Functionalized carriers for the improved delivery of plasminogen activators. Int J Pharm 2012; 424(1-2): 1–11
CrossRef Pubmed Google scholar
[148]
Dewerchin M, Lijnen HR, Stassen JM, De Cock F, Quertermous T, Ginsberg MH, Plow EF, Collen D. Effect of chemical conjugation of recombinant single-chain urokinase-type plasminogen activator with monoclonal antiplatelet antibodies on platelet aggregation and on plasma clot lysis in vitro and in vivo. Blood 1991; 78(4): 1005–1018
Pubmed
[149]
Asahi M, Rammohan R, Sumii T, Wang X, Pauw RJ, Weissig V, Torchilin VP, Lo EH. Antiactin-targeted immunoliposomes ameliorate tissue plasminogen activator-induced hemorrhage after focal embolic stroke. J Cereb Blood Flow Metab 2003; 23(8): 895–899
CrossRef Pubmed Google scholar
[150]
Underwood MJ, Pringle S, de Bono DP. Reduction of thrombus formation in vivo using a thrombolytic agent targeted at damaged endothelial cells. Br J Surg 1992; 79(9): 915–917
CrossRef Pubmed Google scholar
[151]
Maksimenko AV, Petrov AD, Tischenko EG, Smirnov MD. Experimentally targeted thrombolytic therapy. Application of modified thrombin conjugated with urokinase. Ann N Y Acad Sci 1995; 750(496–501
[152]
Murciano JC, Higazi AA, Cines DB, Muzykantov VR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J Control Release 2009; 139(3): 190–196
CrossRef Pubmed Google scholar
[153]
Lian Q, Szarka SJ, Ng KK, Wong SL. Engineering of a staphylokinase-based fibrinolytic agent with antithrombotic activity and targeting capability toward thrombin-rich fibrin and plasma clots. J Biol Chem 2003; 278(29): 26677–26686
CrossRef Pubmed Google scholar
[154]
Muzykantov VR, Barnathan ES, Atochina EN, Kuo A, Danilov SM, Fisher AB. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature. J Pharmacol Exp Ther 1996; 279(2): 1026–1034
Pubmed
[155]
Murciano JC, Muro S, Koniaris L, Christofidou-Solomidou M, Harshaw DW, Albelda SM, Granger DN, Cines DB, Muzykantov VR. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003; 101(10): 3977–3984
CrossRef Pubmed Google scholar
[156]
Hagemeyer CE, Tomic I, Jaminet P, Weirich U, Bassler N, Schwarz M, Runge MS, Bode C, Peter K. Fibrin-targeted direct factor Xa inhibition: construction and characterization of a recombinant factor Xa inhibitor composed of an anti-fibrin single-chain antibody and tick anticoagulant peptide. Thromb Haemost 2004; 92(1): 47–53
Pubmed
[157]
Line BR, Weber PB, Lukasiewicz R, Dansereau RN. Reduction of background activity through radiolabeling of antifibrin Fab' with 99mTc-dextran. J Nucl Med 2000; 41(7): 1264–1270
Pubmed
[158]
Marsh JN, Senpan A, Hu G, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond) 2007; 2(4): 533–543
CrossRef Pubmed Google scholar
[159]
Yurko Y, Maximov V, Andreozzi E, Thompson GL, Vertegel AA. Design of biomedical nanodevices for dissolution of blood clots. Mater Sci Eng C 2009; 29(3): 737–741
CrossRef Google scholar
[160]
Piras AM, Chiellini F, Fiumi C, Bartoli C, Chiellini E, Fiorentino B, Farina C. A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. Int J Pharm 2008; 357(1-2): 260–271
CrossRef Pubmed Google scholar
[161]
Torchilin VP, Maksimenko AV, Tischenko EG, Ignashenkova GV, Ermolin GA. Immobilized thrombolytic enzymes possessing increased affinity toward substrate. Ann N Y Acad Sci 1984; 434:289–291
[162]
Runge MS, Bode C, Matsueda GR, Haber E. Antibody-enhanced thrombolysis: targeting of tissue plasminogen activator in vivo. Proc Natl Acad Sci USA 1987; 84(21): 7659–7662
CrossRef Pubmed Google scholar
[163]
Runge MS, Bode C, Matsueda GR, Haber E. Conjugation to an antifibrin monoclonal antibody enhances the fibrinolytic potency of tissue plasminogen activator in vitro. Biochemistry 1988; 27(4): 1153–1157
CrossRef Pubmed Google scholar
[164]
Bode C, Matsueda GR, Hui KY, Haber E. Antibody-directed urokinase: a specific fibrinolytic agent. Science 1985; 229(4715): 765–767
CrossRef Pubmed Google scholar
[165]
Bode C, Runge MS, Newell JB, Matsueda GR, Haber E. Characterization of an antibody-urokinase conjugate. A plasminogen activator targeted to fibrin. J Biol Chem 1987; 262(22): 10819–10823
Pubmed
[166]
Dewerchin M, Lijnen HR, Van Hoef B, De Cock F, Collen D. Biochemical properties of conjugates of urokinase-type plasminogen activator with a monoclonal antibody specific for cross-linked fibrin. Eur J Biochem 1989; 185(1): 141–149
CrossRef Pubmed Google scholar
[167]
Collen D, Dewerchin M, Rapold HJ, Lijnen HR, Stassen JM. Thrombolytic and pharmacokinetic properties of a conjugate of recombinant single-chain urokinase-type plasminogen activator with a monoclonal antibody specific for cross-linked fibrin in a baboon venous thrombosis model. Circulation 1990; 82(5): 1744–1753
CrossRef Pubmed Google scholar
[168]
Collen D, Dewerchin M, Stassen JM, Kieckens L, Lijnen HR. Thrombolytic and pharmacokinetic properties of conjugates of urokinase-type plasminogen activator with a monoclonal antibody specific for crosslinked fibrin. Fibrinolysis 1989; 3(4): 197–202
CrossRef Google scholar
[169]
Liang JF, Li YT, Song H, Park YJ, Naik SS, Yang VC. ATTEMPTS: a heparin/protamine-based delivery system for enzyme drugs. J Control Release 2002; 78(1-3): 67–79
CrossRef Pubmed Google scholar
[170]
Yang VC, Naik SS, Song H, Dombkowski AA, Crippen G, Liang JF. Construction and characterization of a t-PA mutant for use in ATTEMPTS: a drug delivery system for achieving targeted thrombolysis. J Control Release 2005; 110(1): 164–176
CrossRef Pubmed Google scholar
[171]
Bode C, Runge MS, Schönermark S, Eberle T, Newell JB, Kübler W, Haber E. Conjugation to antifibrin Fab' enhances fibrinolytic potency of single-chain urokinase plasminogen activator. Circulation 1990; 81(6): 1974–1980
CrossRef Pubmed Google scholar
[172]
Bode C, Runge MS, Newell JB, Matsueda GR, Haber E. Thrombolysis by a fibrin-specific antibody Fab'-urokinase conjugate. J Mol Cell Cardiol 1987; 19(4): 335–341
CrossRef Pubmed Google scholar
[173]
Dewerchin M, Lijnen HR, Collen D. Characterisation of a chemical conjugate between a low molecular weight form of recombinant single chain urokinase-type plasminogen activator (comprising leu-144 through leu-411) and F(ab')2-fragments of a fibrin D-dimer-specific monoclonal antibody. Fibrinolysis 1990; 4(1): 11–18
CrossRef Google scholar
[174]
Lijnen HR, Dewerchin M, De Cock F, Collen D. Effect of fibrin-targeting on clot lysis with urokinase-type plasminogen activator. Thromb Res 1990; 57(3): 333–342
CrossRef Pubmed Google scholar
[175]
Runge MS, Harker LA, Bode C, Ruef J, Kelly AB, Marzec UM, Allen E, Caban R, Shaw SY, Haber E, Hanson SR. Enhanced thrombolytic and antithrombotic potency of a fibrin-targeted plasminogen activator in baboons. Circulation 1996; 94(6): 1412–1422
CrossRef Pubmed Google scholar
[176]
Holvoet P, Laroche Y, Lijnen HR, Van Cauwenberge R, Demarsin E, Brouwers E, Matthyssens G, Collen D. Characterization of a chimeric plasminogen activator consisting of a single-chain Fv fragment derived from a fibrin fragment D-dimer-specific antibody and a truncated single-chain urokinase. J Biol Chem 1991; 266(29): 19717–19724
Pubmed
[177]
Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009; 124(3): 306–310
CrossRef Pubmed Google scholar
[178]
Tiukinhoy-Laing SD, Huang S, Klegerman M, Holland CK, McPherson DD. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 2007; 119(6): 777–784
CrossRef Pubmed Google scholar
[179]
Laing ST, Moody M, Smulevitz B, Kim H, Kee P, Huang S, Holland CK, McPherson DD. Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model—brief report. Arterioscler Thromb Vasc Biol 2011; 31(6): 1357–1359
CrossRef Pubmed Google scholar
[180]
AIMS Trial Study Group. Effect of intravenous APSAC on mortality after acute myocardial infarction: preliminary report of a placebo-controlled clinical trial. Lancet 1988; 331(8585): 545–549 PMID:2894490
[181]
Robbins KC, Tanaka Y. Covalent molecular weight approximately 92 000 hybrid plasminogen activator derived from human plasmin amino-terminal and urokinase carboxyl-terminal domains. Biochemistry 1986; 25(12): 3603–3611
CrossRef Pubmed Google scholar
[182]
Robbins KC, Boreisha IG. A covalent molecular weight approximately 92,000 hybrid plasminogen activator derived from human plasmin fibrin-binding and tissue plasminogen activator catalytic domains. Biochemistry 1987; 26(15): 4661–4667
CrossRef Pubmed Google scholar
[183]
Maksimenko AV, Torchilin VP. Water-soluble urokinase derivatives with increased affinity to the fibrin clot. Thromb Res 1985; 38(3): 289–295
CrossRef Pubmed Google scholar
[184]
Maksimenko AV, Samarenko MB, Petrov AD, Tischenko EG, Ruda M, Torchilin VP. Fibrinogen-immobilized urokinase demonstrates increased thrombolytic activity in animal experiments. Ann N Y Acad Sci 1990; 613:479–482
[185]
Klegerman M, Parikh D, Tiukinhoy-Laing S, McPherson D. Ability of human tissue plasminogen activator to act as a targeting agent in tPA-loaded echogenic liposomes. AAPS J 2006; 8(S2):Abstr. T2111
[186]
Moody M, Laing ST, Huang S, Kim H, Smulevitz B, Zou Y, McPherson DD, Klegerman ME. Doppler ultrasound enhances the thrombolytic activity of tissue-plasminogen activator-loaded echogenic liposomes. Circulation 2007; 116: II-646
[187]
Smith DA, Vaidya SS, Kopechek JA, Huang SL, Klegerman ME, McPherson DD, Holland CK. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 2010; 36(1): 145–157
CrossRef Pubmed Google scholar
[188]
Laing ST, Moody MR, Kim H, Smulevitz B, Huang SL, Holland CK, McPherson DD, Klegerman ME. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 2012; 130(4): 629–635
CrossRef Pubmed Google scholar
[189]
Heeremans JL, Kraaijenga JJ, Los P, Kluft C, Crommelin DJ. Development of a procedure for coupling the homing device glu-plasminogen to liposomes. Biochim Biophys Acta 1992; 1117(3): 258–264
CrossRef Pubmed Google scholar
[190]
Gidlöf AC, Ocaya P, Krivospitskaya O, Sirsjö A. Vitamin A: a drug for prevention of restenosis/reocclusion after percutaneous coronary intervention? Clin Sci (Lond) 2008; 114(1): 19–25
CrossRef Pubmed Google scholar
[191]
Glagov S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation 1994; 89(6): 2888–2891
CrossRef Pubmed Google scholar
[192]
Labinaz M, Pels K, Hoffert C, Aggarwal S, O’Brien ER. Time course and importance of neoadventitial formation in arterial remodeling following balloon angioplasty of porcine coronary arteries. Cardiovasc Res 1999; 41(1): 255–266
CrossRef Pubmed Google scholar
[193]
Molero L, López-Farré A, Mateos-Cáceres PJ, Fernández-Sánchez R, Luisa Maestro M, Silva J, Rodríguez E, Macaya C. Effect of clopidogrel on the expression of inflammatory markers in rabbit ischemic coronary artery. Br J Pharmacol 2005; 146(3): 419–424
CrossRef Pubmed Google scholar
[194]
Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest 1993; 91(4): 1469–1480
CrossRef Pubmed Google scholar
[195]
Vandelli L, Marietta M, Gambini M, Cavazzuti M, Trenti T, Cenci MA, Casoni F, Bigliardi G, Pentore R, Nichelli P, Zini A. Fibrinogen decrease after intravenous thrombolysis in ischemic stroke patients is a risk factor for intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2015; 24(2): 394–400
CrossRef Pubmed Google scholar

Acknowledgements

I wish to acknowledge the contributions of Dr. David D. McPherson and Dr. Susan T. Laing, University of Texas Health Science Center at Houston (UTHealth), who conducted the study shown in Fig. 2. I also wish to thank Steven Kolodziej of the UTHealth pathology department for preparing the negative staining TEM image shown in Fig. 3. The work was supported, in part, by NIH grant (Nos. HL074002, NS047603, and HL059586).

Compliance with ethics guidelines

Dr. Melvin Klegerman has ownership interest in Zymo Pharmaceuticals, LLC, which has licensed exclusive worldwide rights to the TELIP technology described in this review, but did not provide funding for the research studies summarized herein. Although this is a review article, previously unpublished animal research is described. For that work, all institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(395 KB)

Accesses

Citations

Detail

Sections
Recommended

/