Caveolin proteins: a molecular insight into disease
Hongli Yin, Tianyi Liu, Ying Zhang, Baofeng Yang
Caveolin proteins: a molecular insight into disease
Caveolae are a kind of specific cystic structures of lipid rafts in the cytoplasmic membrane and are rich in cholesterol and sphingolipids. In recent years, many researchers have found that both caveolins and caveolae play a role in the development of various human diseases, including coronary heart disease, hypertension, and nervous system disorders. The specific mechanisms by which caveolins induce diseases have been a topic of interest. However, a number of detailed molecular mechanisms remain poorly understood. This article focuses on the relationship between caveolin proteins and human diseases and reviews the molecular mechanisms of caveolins in disease networks.
caveolin / caveolae / microRNA / disease / signaling pathway / heart / tumor
[1] |
Kiss AL, Aacute, Turi g, Müller N, Kántor O, Botos E. Caveolae and caveolin isoforms in rat peritoneal macrophages. Micron 2002;33(1):75–93
Pubmed
|
[2] |
Parton RG. Caveolae and caveolins. Curr Opin Cell Biol 1996; 8(4): 542–548
CrossRef
Pubmed
Google scholar
|
[3] |
Sargiacomo M, Scherer PE, Tang Z, Kübler E, Song KS, Sanders MC, Lisanti MP. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995; 92(20): 9407–9411
CrossRef
Pubmed
Google scholar
|
[4] |
Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 1998; 273(10): 5419–5422
CrossRef
Pubmed
Google scholar
|
[5] |
Harris J, Werling D, Hope JC, Taylor G, Howard CJ. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol 2002; 23(3): 158–164
CrossRef
Pubmed
Google scholar
|
[6] |
Ockleford CD, Cairns H, Rowe AJ, Byrne S, Scott JJA, Willingale R. The distribution of caveolin-3 immunofluorescence in skeletal muscle fibre membrane defined by dual channel confocal laser scanning microscopy, fast Fourier transform and image modelling. J Microsc 2002; 206(Pt 2): 93–105
CrossRef
Pubmed
Google scholar
|
[7] |
Root KT, Plucinsky SM, Glover KJ. Recent progress in the topology, structure, and oligomerization of caveolin: a building block of caveolae. Curr Top Membr 2015; 75(6): 305–336
CrossRef
Pubmed
Google scholar
|
[8] |
Schubert W, Cohen AW, Hnasko R, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004;84(4):1341–1379
CrossRef
Pubmed
Google scholar
|
[9] |
Low JY, Nicholson HD. Epigenetic modifications of caveolae associated proteins in health and disease. BMC Genet 2015; 16(1): 71
CrossRef
Pubmed
Google scholar
|
[10] |
Boscher C, Nabi IR. Caveolin-1: Role in Cell Signaling. Springer US, 2012: 29–50
|
[11] |
Han B, Tiwari A, Kenworthy AK. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 2015; 16(4): 417–438
CrossRef
Pubmed
Google scholar
|
[12] |
Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem 2002; 277(44): 41295–41298
CrossRef
Pubmed
Google scholar
|
[13] |
Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M. Expression of caveolin-1 in human brain microvessels. Neuroscience 2002; 115(1): 145–152
CrossRef
Pubmed
Google scholar
|
[14] |
Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res 2004; 75(5): 603–613
CrossRef
Pubmed
Google scholar
|
[15] |
Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, Persson L, Hellstrand P, Nilsson BO. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014;34(6):e00153
CrossRef
Google scholar
|
[16] |
Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 2012; 120(1): 147–156
CrossRef
Pubmed
Google scholar
|
[17] |
Chen Y, Dai Z, Liu YM, Tian HH, Deng SX, Chen LX,Wang HD, Qin XP. Inhibitory effects of CGRP on vascular smooth muscle cell proliferation: role of caveolae/caveolin-1/erk_(1/2) signal pathway. Acta Agron Sin 2013; 40(5): 445–453
CrossRef
Google scholar
|
[18] |
Grande-García A, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 2008; 87(8-9): 641–647
CrossRef
Pubmed
Google scholar
|
[19] |
Jasmin JF, Malhotra S, Singh Dhallu M, Mercier I, Rosenbaum DM, Lisanti MP. Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 2007; 100(5): 721–729
CrossRef
Pubmed
Google scholar
|
[20] |
Li Y, Lau WM, So KF, Tong Y, Shen J. Caveolin-1 promote astroglial differentiation of neural stem/progenitor cells through modulating Notch1/NICD and Hes1 expressions. Biochem Biophys Res Commun 2011; 407(3): 517–524
CrossRef
Pubmed
Google scholar
|
[21] |
Sun JH, Yu JT, Tan L. The role of cholesterol metabolism in Alzheimer’s disease. Mol Neurobiol 2015; 51(3): 947–965
CrossRef
Pubmed
Google scholar
|
[22] |
Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC, Vishnivetskaya TA, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Weller RO, Roher AE. The evolution of A β peptide burden in the APP23 transgenic mice: implications for A β deposition in Alzheimer disease. Mol Med 2001; 7(9): 609–618
Pubmed
|
[23] |
Kapoor A, Wang BJ, Liao YF. P3–334: γ-secretase–mediated proteolysis of APP and notch is regulated by caveolin-1. Alzheimer’s Dementia 2008; 4(4Suppl):T619–T620
CrossRef
Google scholar
|
[24] |
Cameron PL, Ruffin JW, Bollag R, Rasmussen H, Cameron RS. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17(24): 9520–9535
Pubmed
|
[25] |
Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 2004; 25(6): 753–759
CrossRef
Pubmed
Google scholar
|
[26] |
Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM, Miyanohara A, Headrick J, Ali SS, Roth DM, Patel PM, Patel HH. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS ONE 2010; 5(12): e15697
CrossRef
Pubmed
Google scholar
|
[27] |
Salgado IK, Serrano M, García JO, Martínez NA, Maldonado HM, Báez-Pagán CA, Lasalde-Dominicci JA, Silva WI. SorLA in glia: shared subcellular distribution patterns with caveolin-1. Cell Mol Neurobiol 2012; 32(3): 409–421
CrossRef
Pubmed
Google scholar
|
[28] |
Diaz-Valdivia N, Bravo D, Huerta H, Henriquez S, Gabler F, Vega M, Romero C, Calderon C, Owen GI, Leyton L, Quest AF. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells. BMC Cancer 2015; 15(1): 463
CrossRef
Pubmed
Google scholar
|
[29] |
Hulit J, Bash T, Fu M, Galbiati F, Albanese C, Sage DR, Schlegel A, Zhurinsky J, Shtutman M, Ben-Ze’ev A, Lisanti MP, Pestell RG. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275(28): 21203–21209
CrossRef
Pubmed
Google scholar
|
[30] |
Fiucci G, Ravid D, Reich R, Liscovitch M. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 2002; 21(15): 2365–2375
CrossRef
Pubmed
Google scholar
|
[31] |
Li S, Couet J, Lisanti MP. Src tyrosine kinases, G α subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271(46): 29182–29190
CrossRef
Pubmed
Google scholar
|
[32] |
Lee H, Park DS, Razani B, Russell RG, Pestell RG, Lisanti MP. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol 2002; 161(4): 1357–1369
CrossRef
Pubmed
Google scholar
|
[33] |
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000; 14(11): 1750–1775
CrossRef
Pubmed
Google scholar
|
[34] |
Kasper M, Seidel D, Knels L, Morishima N, Neisser A, Bramke S, Koslowski R. Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-β1. Histochem Cell Biol 2004; 121(2): 131–140
CrossRef
Pubmed
Google scholar
|
[35] |
Koslowski R, Barth K, Augstein A, Tschernig T, Bargsten G, Aufderheide M, Kasper M. A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression. Histochem Cell Biol 2004; 121(6): 509–519
CrossRef
Pubmed
Google scholar
|
[36] |
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001; 293(5539): 2449–2452
CrossRef
Pubmed
Google scholar
|
[37] |
Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 2007; 204(10): 2373–2382
CrossRef
Pubmed
Google scholar
|
[38] |
Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)- β/SMAD signaling through an interaction with the TGF-β type I receptor. J Biol Chem 2001; 276(9): 6727–6738
CrossRef
Pubmed
Google scholar
|
[39] |
Lee EK, Lee YS, Han IO, Park SH. Expression of Caveolin-1 reduces cellular responses to TGF-β1 through down-regulating the expression of TGF-β type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun 2007; 359(2): 385–390
CrossRef
Pubmed
Google scholar
|
[40] |
Tourkina E, Gooz P, Pannu J, Bonner M, Scholz D, Hacker S, Silver RM, Trojanowska M, Hoffman S. Opposing effects of protein kinase Cα and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J Biol Chem 2005; 280(14): 13879–13887
CrossRef
Pubmed
Google scholar
|
[41] |
Royce SG, Le Saux CJ. Role of caveolin-1 in asthma and chronic inflammatory respiratory diseases. Expert Rev Respir Med 2014; 8(3): 339–347
CrossRef
Pubmed
Google scholar
|
[42] |
Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284(2): C457–C474
CrossRef
Pubmed
Google scholar
|
[43] |
Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007; 21(7): 1565–1574
CrossRef
Pubmed
Google scholar
|
[44] |
Bach FC, Zhang Y, Miranda-Bedate A, Verdonschot LC, Bergknut N, Creemers LB, Ito K, Sakai D, Chan D, Meij BP, Tryfonidou MA. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther 2015; 18(59): 59
Pubmed
|
[45] |
Zhang C, Su X, Bellner L, Lin DH. Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity. Am J Physiol Cell Physiol 2016; 310(11): C993–C1000
Pubmed
|
[46] |
Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1): 131–135
CrossRef
Pubmed
Google scholar
|
[47] |
Kwon H, Lee J, Jeong K, Jang D, Pak Y. A novel actin cytoskeleton-dependent noncaveolar microdomain composed of homo-oligomeric caveolin-2 for activation of insulin signaling. Biochim Biophys Acta 2013; 1833(10): 2176–2189
CrossRef
Pubmed
Google scholar
|
[48] |
Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and-2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 1998; 436(3): 403–410
CrossRef
Pubmed
Google scholar
|
[49] |
Scherer PE, Lewis RY, Volonté D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997; 272(46): 29337–29346
CrossRef
Pubmed
Google scholar
|
[50] |
Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W, Lisanti MP. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22(7): 2329–2344
CrossRef
Pubmed
Google scholar
|
[51] |
Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 2003; 23(7): 1161–1168
CrossRef
Pubmed
Google scholar
|
[52] |
Lee S, Kwon H, Jeong K, Pak Y. Regulation of cancer cell proliferation by caveolin-2 down-regulation and re-expression. Int J Oncol 2011; 38(5): 1395–1402
Pubmed
|
[53] |
Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124(Pt 16): 2826–2836
CrossRef
Pubmed
Google scholar
|
[54] |
Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, Enokida H. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol 2013; 190(3): 1059–1068
CrossRef
Pubmed
Google scholar
|
[55] |
Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1): 131–135
CrossRef
Pubmed
Google scholar
|
[56] |
Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M. Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 2004; 91(5): 959–965
Pubmed
|
[57] |
López IP, Milagro FI, Martí A, Moreno-Aliaga MJ, Martínez JA, De Miguel C. Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display. Biochem Biophys Res Commun 2004; 318(1): 234–239
CrossRef
Pubmed
Google scholar
|
[58] |
Zaas DW, Duncan MJ, Li G, Wright JR, Abraham SN. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J Biol Chem 2005; 280(6): 4864–4872
CrossRef
Pubmed
Google scholar
|
[59] |
Totta P, Gionfra F, Busonero C, Acconcia F. Modulation of 17β-estradiol signaling on cellular proliferation by caveolin-2. J Cell Physiol 2016; 231(6): 1219–1225
Pubmed
|
[60] |
Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271(4): 2255–2261
CrossRef
Pubmed
Google scholar
|
[61] |
Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, Kikuchi T. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet. 2000;9(20):3047–3054
Pubmed
|
[62] |
Kim JH, Peng D, Schlebach JP, Hadziselimovic A, Sanders CR. Modest effects of lipid modifications on the structure of caveolin-3. Biochemistry 2014; 53(27): 4320–4322
CrossRef
Pubmed
Google scholar
|
[63] |
Schmitz M, Zerr I, Althaus HH. Effect of cavtratin, a caveolin-1 scaffolding domain peptide, on oligodendroglial signaling cascades. Cell Mol Neurobiol 2011; 31(7): 991–997
CrossRef
Pubmed
Google scholar
|
[64] |
Olmo-Turrubiarte AD, Calzada-Torres A, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Garcia-Alonso P, Contreras-Ramos A. Mouse models for the study of postnatal cardiac hypertrophy. IJC Heart Vasculature 2015; 103: 131–140
CrossRef
Google scholar
|
[65] |
Markandeya YS, Phelan LJ, Woon MT, Keefe AM, Reynolds CR, August BK, Hacker TA, Roth DM, Patel HH, Balijepalli RC. Caveolin-3 overexpression attenuates cardiac hypertrophy via inhibition of T-type Ca2+ current modulated by protein kinase Cα in cardiomyocytes. J Biol Chem 2015; 290(36): 22085–22100
CrossRef
Pubmed
Google scholar
|
[66] |
Stoppani E, Rossi S, Meacci E, Penna F, Costelli P, Bellucci A, Faggi F, Maiolo D, Monti E, Fanzani A. Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochim Biophys Acta 2011; 1812(4): 468–479
CrossRef
Pubmed
Google scholar
|
[67] |
Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KFJ, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013; 62(7): 2318–2328
CrossRef
Pubmed
Google scholar
|
[68] |
Tran C, Stary CM, Schilling JM, Bentley B, Patel HH, Roth DM. Role of caveolin-3 in lymphocyte activation. Life Sci 2015; 121: 35–39
CrossRef
Pubmed
Google scholar
|
[69] |
Zhao H, Zhang QR, Zhang HP, Chen XX. Effects of hyperbaric oxygen on the expression of caveolin-2 in brain tissues and the blood brain barrier after focal cerebral ischemia and reperfusion. Chin J Phys Med Rehabil (Zhonghua Wu Li Yi Xue Yu Kang Fu Za Zhi) 2011; 33(9):652–655 (in Chinese)
|
/
〈 | 〉 |