Incremental value of contrast echocardiography in the diagnosis of left ventricular noncompaction

Xiaoxiao Zhang, Li Yuan, Linli Qiu, Yali Yang, Qing Lv, Lin Li, Jing Wang, Lin He, Li Zhang, Xinfang Wang, Mingxing Xie, Xu Yu Jin

PDF(301 KB)
PDF(301 KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (4) : 499-506. DOI: 10.1007/s11684-016-0473-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Incremental value of contrast echocardiography in the diagnosis of left ventricular noncompaction

Author information +
History +

Abstract

Contrast echocardiography with left ventricular opacification (LVO) improves the definition of endocardium in two-dimensional echocardiography (2DE). This study was aimed to determine whether LVO offered added diagnostic value in noncompaction of left ventricular myocardium (NCVM). A total of 85 patients (40±20 years, 54 males) with suspected NCVM were subjected to transthoracic 2DE and LVO, and 40 healthy volunteers were examined with 2DE and assigned as control subjects. The location of NCVM, the thickness ratio of noncompacted to compacted myocardium (NCR), and the cavity size and ejection fraction of LV were quantified. Results revealed that NCVM was mainly located in the LV medium (53.2%), apical (46.2%) segments, and lateral wall (39.8%). The NCR obtained through LVO was greater than that detected through 2DE (4.2±1.3 vs. 3.3±1.2, P<0.001), and higher inter-correlations and less intra- and inter-observer variabilities were determined in the former than in the latter. The NCVM detection rates were also increased from 63.5% via 2DE to 83.5% via LVO and 89.4% via 2DE combined with LVO (2DE+ LVO) (P = 0.0004). The LV cavity size was greater and the LV ejection fraction (LVEF) was lower in the NCVM patients than in the control group (P<0.01). In the NCVM group, the LV cavity size was higher and the LVEF was lower in LVO than in 2DE (P<0.01). In conclusion, contrast echocardiography contributes significant sensitivity and reproducibility to routine transthoracic echocardiography in NCVM diagnosis. Therefore, this technique should be clinically performed to diagnose suspected NCVM.

Keywords

echocardiography / left ventricular noncompaction cardiomyopathy / echo contrast media

Cite this article

Download citation ▾
Xiaoxiao Zhang, Li Yuan, Linli Qiu, Yali Yang, Qing Lv, Lin Li, Jing Wang, Lin He, Li Zhang, Xinfang Wang, Mingxing Xie, Xu Yu Jin. Incremental value of contrast echocardiography in the diagnosis of left ventricular noncompaction. Front. Med., 2016, 10(4): 499‒506 https://doi.org/10.1007/s11684-016-0473-8

References

[1]
Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 2000; 36(2): 493–500
CrossRef Pubmed Google scholar
[2]
Ritter M, Oechslin E, Sütsch G, Attenhofer C, Schneider J, Jenni R. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc 1997; 72(1): 26–31
CrossRef Pubmed Google scholar
[3]
Lorsheyd A, Cramer MJM, Velthuis BK, Vonken EJP, van der Smagt J, van Tintelen P, Hauer RNW. Familial occurrence of isolated non-compaction cardiomyopathy. Eur J Heart Fail 2006; 8(8): 826–831
CrossRef Pubmed Google scholar
[4]
Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM, Burns PN, Castello R, Coon PD, Hagen ME, Jollis JG, Kimball TR, Kitzman DW, Kronzon I, Labovitz AJ, Lang RM, Mathew J, Moir WS, Nagueh SF, Pearlman AS, Perez JE, Porter TR, Rosenbloom J, Strachan GM, Thanigaraj S, Wei K, Woo A, Yu EHC, Zoghbi WA; American Society of Echocardiography. American Society of Echocardiography consensus statement on the clinical cpplications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 2008; 21(11): 1179–1201, quiz 1281
CrossRef Pubmed Google scholar
[5]
Porter TR, Abdelmoneim S, Belcik JT, McCulloch ML, Mulvagh SL, Olson JJ, Porcelli C, Tsutsui JM, Wei K. Guidelines for the cardiac sonographer in the performance of contrast echocardiography: a focused update from the American Society of Echocardiography. J Am Soc Echocardiogr 2014; 27(8): 797–810
CrossRef Pubmed Google scholar
[6]
Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002; 105(4): 539–542
CrossRef Pubmed Google scholar
[7]
Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 2001; 86(6): 666–671
CrossRef Pubmed Google scholar
[8]
Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S, Lehmkuhl L, Gutberlet M. Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol 2012; 22(12): 2699–2709
CrossRef Pubmed Google scholar
[9]
Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, Vidal V, Bartoli JM, Habib G, Moulin G. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 2010; 31(9): 1098–1104
CrossRef Pubmed Google scholar
[10]
Stöllberger C, Gerecke B, Finsterer J, Engberding R. Refinement of echocardiographic criteria for left ventricular noncompaction. Int J Cardiol 2013; 165(3): 463–467
CrossRef Pubmed Google scholar
[11]
Geleijnse ML, Nemes A, Vletter WB, Michels M, Soliman OI, Caliskan K, Galema TW, ten Cate FJ. Adverse reactions after the use of sulphur hexafluoride (SonoVue) echo contrast agent. J Cardiovasc Med (Hagerstown) 2009; 10(1): 75–77
CrossRef Pubmed Google scholar
[12]
Nanda NC, Wistran DC, Karlsberg RP, Hack TC, Smith WB, Foley DA, Picard MH, Cotter B. Multicenter evaluation of SonoVue for improved endocardial border delineation. Echocardiography 2002; 19(1): 27–36
CrossRef Pubmed Google scholar
[13]
Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, Kiotsekoglou A, Tome MT, Pellerin D, McKenna WJ, Elliott PM. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J 2005; 26(2): 187–192
CrossRef Pubmed Google scholar
[14]
Perez-David E, Garcia-Fernandez MA, Gómez-Anta I, de Diego JJG, García-Robles JA, Lafuente J. Isolated noncompaction of the ventricular myocardium: infrequent because of missed diagnosis? J Am Soc Echocardiogr 2007; 20(4): 439.e1–439.e4
CrossRef Pubmed Google scholar
[15]
Wang C, Deng YB, Zhu Y, Liu YN, Bi XJ. Evaluation of subtle myocardial noncompaction by contrast echocardiography in patients with hypertrophic cardiomyopathy and its relationship with regional ventricular systolic dysfunction. J Ultrasound Med 2012; 31(10): 1551–1557
Pubmed
[16]
Gianfagna P, Badano LP, Faganello G, Tosoratti E, Fioretti PM. Additive value of contrast echocardiography for the diagnosis of noncompaction of the left ventricular myocardium. Eur J Echocardiogr 2006; 7(1): 67–70
CrossRef Pubmed Google scholar
[17]
de Groot-de Laat LE, Krenning BJ, ten Cate FJ, Roelandt JRTC. Usefulness of contrast echocardiography for diagnosis of left ventricular noncompaction. Am J Cardiol 2005; 95(9): 1131–1134
CrossRef Pubmed Google scholar
[18]
Yuan L, Xie M, Cheng TO, Wang X, Zhu F, Kong X, Ghoorah D. Left ventricular noncompaction associated with hypertrophic cardiomyopathy: echocardiographic diagnosis and genetic analysis of a new pedigree in China. Int J Cardiol 2014; 174(2): 249–259
CrossRef Pubmed Google scholar
[19]
Qiu LL, Xie MX, Wang XF, Lv Q, Li L, Yang Y, Yuan L, Sun ZX. Assessment of left ventricular volume and function in patients with left ventricular non-compaction by contrast-enhanced three-dimensional echocardiography. Chin J Ultrasonogr 2014; 23(11): 921–924 (in Chinese)
[20]
Masugata H, Yukiiri K, Takagi Y, Ohmori K, Mizushige K, Kohno M. Potential pitfalls of visualization of myocardial perfusion by myocardial contrast echocardiography with harmonic gray scale B-mode and power Doppler imaging. Int J Cardiovasc Imaging 2004; 20(2): 117–125
CrossRef Pubmed Google scholar
[21]
Vlassak I, Rubin DN, Odabashian JA, Garcia MJ, King LM, Lin SS, Drinko JK, Morehead AJ, Prior DL, Asher CR, Klein AL, Thomas JD. Contrast and harmonic imaging improves accuracy and efficiency of novice readers for dobutamine stress echocardiography. Echocardiography 2002; 19(6): 483–488
CrossRef Pubmed Google scholar
[22]
Yu EHC, Sloggett CE, Iwanochko RM, Rakowski H, Siu SC. Feasibility and accuracy of left ventricular volumes and ejection fraction determination by fundamental, tissue harmonic, and intravenous contrast imaging in difficult-to-image patients. J Am Soc Echocardiogr 2000; 13(3): 216–224
CrossRef Pubmed Google scholar
[23]
Thuny F, Jacquier A, Jop B, Giorgi R, Gaubert JY, Bartoli JM, Moulin G, Habib G. Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis 2010; 103(3): 150–159
CrossRef Pubmed Google scholar
[24]
Forster HP, Emanuel E, Grady C. The 2000 revision of the Declaration of Helsinki: a step forward or more confusion? Lancet 2001; 358(9291): 1449–1453
CrossRef Pubmed Google scholar

Acknowledgements

We are grateful for the support of the staff of the echocardiography laboratories in the Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. This project was funded by the National Natural Science Foundation of China (Nos. 81401429 and 81271582). Dr. Li Yuan was a Visiting Fellow at Oxford Echo Core Laboratory, University of Oxford, John Radcliffe Hospital and was financially supported by Oxford University Hospitals Charitable Research Fund.

Compliance with ethics guidelines

Xiaoxiao Zhang, Li Yuan, Linli Qiu, Yali Yang, Qing Lv, Lin Li, Jing Wang, Lin He, Li Zhang, Xinfang Wang, Mingxing Xie, and Xu Yu Jin declared that they have no conflicts of interest in connection to this research. All procedures were performed in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 [24]. Informed consent was obtained from all patients who participated in this study.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(301 KB)

Accesses

Citations

Detail

Sections
Recommended

/