Regulatory mechanism and functional analysis of S100A9 in acute promyelocytic leukemia cells

Yonglan Zhu, Fang Zhang, Shanzhen Zhang, Wanglong Deng, Huiyong Fan, Haiwei Wang, Ji Zhang

PDF(395 KB)
PDF(395 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (1) : 87-96. DOI: 10.1007/s11684-016-0469-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Regulatory mechanism and functional analysis of S100A9 in acute promyelocytic leukemia cells

Author information +
History +

Abstract

S100A9, a calcium-binding protein, participates in the inflammatory process and development of various tumors, thus attracting much attention in the field of cancer biology. This study aimed to investigate the regulatory mechanism of S100A9 and its function involvement in APL. We used real-time quantitative PCR to determine whether PML/RARα affects the expression of S100A9 in NB4 and PR9 cells upon ATRA treatment. ChIP-based PCR and dual-luciferase reporter assay system were used to detect how PML/RARα and PU.1 regulate S100A9 promoter activity. CCK-8 assay and flow cytometry were employed to observe the viability and apoptosis of NB4 cells when S100A9 was overexpressed. Results showed that S100A9 was an ATRA-responsive gene, and PML/RARα was necessary for the ATRA-induced expression of S100A9 in APL cells. In addition, PU.1 could bind to the promoter of S100A9, especially when treated with ATRA in NB4 cells, and promote its activity. More importantly, overexpression of S100A9 induced the apoptosis of NB4 cells and inhibited cell growth. Collectively, our data indicated that PML/RARα and PU.1 were necessary for the ATRA-induced expression of S100A9 in APL cells. Furthermore, S100A9 promoted apoptosis in APL cells and affected cell growth.

Keywords

S100A9 / PU.1 / PML/RARα / ATRA / APL

Cite this article

Download citation ▾
Yonglan Zhu, Fang Zhang, Shanzhen Zhang, Wanglong Deng, Huiyong Fan, Haiwei Wang, Ji Zhang. Regulatory mechanism and functional analysis of S100A9 in acute promyelocytic leukemia cells. Front. Med., 2017, 11(1): 87‒96 https://doi.org/10.1007/s11684-016-0469-4

References

[1]
de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010; 10(11): 775–783
CrossRef Pubmed Google scholar
[2]
Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, Li JM, Tang W, Zhao WL, Wu W, Sun HP, Chen QS, Chen B, Zhou GB, Zelent A, Waxman S, Wang ZY, Chen SJ, Chen Z. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2009; 106(9): 3342–3347
CrossRef Pubmed Google scholar
[3]
Wang K, Wang P, Shi J, Zhu X, He M, Jia X, Yang X, Qiu F, Jin W, Qian M, Fang H, Mi J, Yang X, Xiao H, Minden M, Du Y, Chen Z, Zhang J. PML/RARα targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010; 17(2): 186–197
CrossRef Pubmed Google scholar
[4]
Wei S, Zhao M, Wang X, Li Y, Wang K. PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol 2016; 9(1): 44
CrossRef Pubmed Google scholar
[5]
Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, Wang K, Zhang J. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol 2013; 6(1): 25
CrossRef Pubmed Google scholar
[6]
Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33(7): 637–668
CrossRef Pubmed Google scholar
[7]
Nacken W, Roth J, Sorg C, Kerkhoff C. S100A9/S100A8: myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc Res Tech 2003; 60(6): 569–580
CrossRef Pubmed Google scholar
[8]
Hunter MJ, Chazin WJ. High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J Biol Chem 1998; 273(20): 12427–12435
CrossRef Pubmed Google scholar
[9]
Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 2012; 4(1): 31–40
CrossRef Pubmed Google scholar
[10]
Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol 2008; 34(4): 357–364
CrossRef Pubmed Google scholar
[11]
Khammanivong A, Wang C, Sorenson BS, Ross KF, Herzberg MC. S100A8/A9 (calprotectin) negatively regulates G2/M cell cycle progression and growth of squamous cell carcinoma. PLoS ONE 2013; 8(7): e69395
CrossRef Pubmed Google scholar
[12]
Yui S, Nakatani Y, Mikami M. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 2003; 26(6): 753–760
CrossRef Pubmed Google scholar
[13]
Kuwayama A, Kuruto R, Horie N, Takeishi K, Nozawa R. Appearance of nuclear factors that interact with genes for myeloid calcium binding proteins (MRP-8 and MRP-14) in differentiated HL-60 cells. Blood 1993; 81(11): 3116–3121
Pubmed
[14]
Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T, Ries RE, Lubman O, Fremont DH, McLellan MD, Payton JE, Westervelt P, DiPersio JF, Link DC, Walter MJ, Graubert TA, Watson M, Baty J, Heath S, Shannon WD, Nagarajan R, Bloomfield CD, Mardis ER, Wilson RK, Ley TJ. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 2008; 111(9): 4797–4808
CrossRef Pubmed Google scholar
[15]
Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG. The acute promyelocytic leukemia-specific PML-RAR a fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74(3): 423–431
CrossRef Pubmed Google scholar
[16]
Bealer JF, Colgin M. S100A8/A9: a potential new diagnostic aid for acute appendicitis. Acad Emerg Med 2010; 17(3): 333–336
CrossRef Pubmed Google scholar
[17]
Horvath I, Jia X, Johansson P, Wang C, Moskalenko R, Steinau A, Forsgren L, Wågberg T, Svensson J, Zetterberg H, Morozova-Roche LA. Pro-inflammatory S100A9 protein as a robust biomarker differentiating early stages of cognitive impairment in Alzheimer’s disease. ACS Chem Neurosci 2016; 7(1): 34–39
CrossRef Pubmed Google scholar
[18]
van Bon L, Cossu M, Loof A, Gohar F, Wittkowski H, Vonk M, Roth J, van den Berg W, van Heerde W, Broen JC, Radstake TR. Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis 2014; 73(8): 1585–1589
CrossRef Pubmed Google scholar
[19]
Kim WT, Kim J, Yan C, Jeong P, Choi SY, Lee OJ, Chae YB, Yun SJ, Lee SC, Kim WJ. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann Oncol 2014; 25(5): 974–979
CrossRef Pubmed Google scholar
[20]
Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J, Neilly MB, Jayathilaka N, Johnson DS, Wang L, Lavau C, Zhang Y, Tseng C, Zhang X, Wang J, Yu J, Yang H, Wang SM, Rowley JD, Chen J, Thirman MJ. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 2009; 69(3): 1109–1116
CrossRef Pubmed Google scholar
[21]
Ishii Y, Kasukabe T, Honma Y. Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta 2005; 1745(2): 156–165
CrossRef Pubmed Google scholar
[22]
Roth J, Goebeler M, van den Bos C, Sorg C. Expression of calcium-binding proteins MRP8 and MRP14 is associated with distinct monocytic differentiation pathways in HL-60 cells. Biochem Biophys Res Commun 1993; 191(2): 565–570
Pubmed
[23]
Wang JG, Barsky LW, Davicioni E, Weinberg KI, Triche TJ, Zhang XK, Wu L. Retinoic acid induces leukemia cell G1 arrest and transition into differentiation by inhibiting cyclin-dependent kinase-activating kinase binding and phosphorylation of PML/RARα. FASEB J 2006; 20(12): 2142–2144
CrossRef Pubmed Google scholar
[24]
Nervi C, Ferrara FF, Fanelli M, Rippo MR, Tomassini B, Ferrucci PF, Ruthardt M, Gelmetti V, Gambacorti-Passerini C, Diverio D, Grignani F, Pelicci PG, Testi R. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARα fusion protein. Blood 1998; 92(7): 2244–2251
Pubmed
[25]
Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF, Bonci D, Grignani F, Nervi C, Pelicci PG. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RARα-mediated retinoic acid response. Oncogene 1999; 18(46): 6313–6321
CrossRef Pubmed Google scholar
[26]
Kim JH, Oh SH, Kim EJ, Park SJ, Hong SP, Cheon JH, Kim TI, Kim WH. The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun 2012; 423(1): 60–66PMID:22634002
CrossRef Google scholar
[27]
Bando M, Zou X, Hiroshima Y, Kataoka M, Ross KF, Shinohara Y, Nagata T, Herzberg MC, Kido J. Mechanism of interleukin-1a transcriptional regulation of S100A9 in a human epidermal keratinocyte cell line. Biochim Biophys Acta 2013; 1829(9): 954–962
CrossRef Pubmed Google scholar
[28]
Li C, Chen H, Ding F, Zhang Y, Luo A, Wang M, Liu Z. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem J 2009; 422(2): 363–372
CrossRef Pubmed Google scholar
[29]
McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996; 15(20): 5647–5658
Pubmed
[30]
Chau D, Ng K, Chan TSY, Cheng YY, Fong B, Tam S, Kwong YL, Tse E. Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol 2015; 8(1): 46
CrossRef Pubmed Google scholar
[31]
Zhang Y, Zhang Z, Li J, Li L, Han X, Han L, Hu L, Wang S, Zhao Y, Li X, Zhang Y, Fan S, Lv C, Li Y, Su Y, Zhao H, Zhang X, Zhou J. Long-term efficacy and safety of arsenic trioxide for first-line treatment of elderly patients with newly diagnosed acute promyelocytic leukemia. Cancer 2013; 119(1): 115–125
CrossRef Pubmed Google scholar
[32]
Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, Shi JY, Zheng PZ, Yan H, Liu YF, Chen Y, Shen Y, Wu W, Tang W, Waxman S, De Thé H, Wang ZY, Chen SJ, Chen Z. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004; 101(15): 5328–5335
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 81370655), and the grants from Ministry of Science and Technology of China (Nos. 2013CB966802 and 2012AA02A505). We also greatly appreciated institutional supports from Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China.

Compliance with ethics guidelines

Yonglan Zhu, Fang Zhang, Shanzhen Zhang, Wanglong Deng, Huiyong Fan, Haiwei Wang, and Ji Zhang declare that there is no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

Electronic Supplementary

MaterialSupplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11684-016-0469-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(395 KB)

Accesses

Citations

Detail

Sections
Recommended

/