From SARS to MERS: evidence and speculation
Hainv Gao, Hangping Yao, Shigui Yang, Lanjuan Li
From SARS to MERS: evidence and speculation
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic pathogen. In 2012, the infectious outbreak caused by MERS-CoV in Saudi Arabia has spread to more than 1600 patients in 26 countries, resulting in over 600 deaths. Without a travel history, few clinical and radiological features can reliably differentiate MERS from SARS. But in real world, comparing with SARS, MERS presents more vaguely defined epidemiology, more severe symptoms, and higher case fatality rate. In this review, we summarize the recent findings in the field of MERS-CoV, especially its molecular virology, interspecies mechanisms, clinical features, antiviral therapies, and the further investigation into this disease. As a newly emerging virus, many questions are not fully answered, including the exact mode of transmission chain, geographical distribution, and animal origins. Furthermore, a new protocol needs to be launched to rapidly evaluate the effects of unproven antiviral drugs and vaccine to fasten the clinical application of new drugs.
middle east respiratory syndrome / animal origin / cross-species transmission / monoclonal antibody
[1] |
World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003[EB/OL]. 2004–04–21..
|
[2] |
World Health Organization. Middel East respiratory syndrome coronavirus (MERS-CoV) Saudi Arabia.
|
[3] |
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814–1820
CrossRef
Pubmed
Google scholar
|
[4] |
World Health Organization. Background and summary of novel coronavirus infection—as of 22 November 2013. 2013.
|
[5] |
World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV)— Republic of Korea. Geneva: WHO. 24 May 2015.
|
[6] |
Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015; 386 (9997):995–1007
CrossRef
Google scholar
|
[7] |
Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, Chan KH, Woo PC, Yuen KY. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol 2013; 87(15): 8638–8650
CrossRef
Pubmed
Google scholar
|
[8] |
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1–23
CrossRef
Pubmed
Google scholar
|
[9] |
Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, Madani TA. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 2014; 370(26): 2499–2505
CrossRef
Pubmed
Google scholar
|
[10] |
Farag EA, Reusken CB, Haagmans BL, Mohran KA, Stalin Raj V, Pas SD, Voermans J, Smits SL, Godeke GJ, Al-Hajri MM, Alhajri FH, Al-Romaihi HE, Ghobashy H, El-Maghraby MM, El-Sayed AM, Al Thani MH, Al-Marri S, Koopmans MP. High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014. Infect Ecol Epidemiol 2015; 5(0): 28305
CrossRef
Pubmed
Google scholar
|
[11] |
Chan SM, Damdinjav B, Perera RA, Chu DK, Khishgee B, Enkhbold B, Poon LL, Peiris M. Absence of MERS-Coronavirus in Bactrian Camels, Southern Mongolia, November 2014. Emerg Infect Dis 2015; 21(7): 1269–1271
CrossRef
Pubmed
Google scholar
|
[12] |
Briese T, Mishra N, Jain K, Zalmout IS, Jabado OJ, Karesh WB, Daszak P, Mohammed OB, Alagaili AN, Lipkin WI. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. MBio 2014; 5(3): e01146–e14
CrossRef
Pubmed
Google scholar
|
[13] |
Haagmans BL, van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ, Getu S, de Waal L, Bestebroer TM, van Amerongen G, Verjans GM, Fouchier RA, Smits SL, Kuiken T, Osterhaus AD. Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits. J Virol 2015; 89(11): 6131–6135
CrossRef
Pubmed
Google scholar
|
[14] |
van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott D, Kinne J, McLellan JS, Zhu J, Munster VJ. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 2014; 88(16): 9220–9232
CrossRef
Pubmed
Google scholar
|
[15] |
Barlan A, Zhao J, Sarkar MK, Li K, McCray PB Jr, Perlman S, Gallagher T. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J Virol 2014; 88(9): 4953–4961
CrossRef
Pubmed
Google scholar
|
[16] |
Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, Anti P, Agbenyega O, Meyer B, Oppong S, Sarkodie YA, Kalko EK, Lina PH, Godlevska EV, Reusken C, Seebens A, Gloza-Rausch F, Vallo P, Tschapka M, Drosten C, Drexler JF. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis 2013; 19(3): 456–459
CrossRef
Pubmed
Google scholar
|
[17] |
Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci USA 2014; 111(34): 12516–12521
CrossRef
Pubmed
Google scholar
|
[18] |
Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, Alhakeem R, Durosinloun A, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 2013; 19(11): 1819–1823
CrossRef
Pubmed
Google scholar
|
[19] |
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251–254
CrossRef
Pubmed
Google scholar
|
[20] |
Meyerholz DK, Lambertz AM, McCray PB Jr. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the middle east respiratory syndrome. Am J Pathol 2015; 186(1):78–86
CrossRef
Pubmed
Google scholar
|
[21] |
Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PC, Yuen KY, Jin DY. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol 2014; 88(9): 4866–4876
CrossRef
Pubmed
Google scholar
|
[22] |
Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS ONE 2014; 9(2): e88716
CrossRef
Pubmed
Google scholar
|
[23] |
Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sova P, Carter VS, Yount BL, Graham RL, Baric RS, Katze MG. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio 2013; 4(3): e00165–e13
CrossRef
Pubmed
Google scholar
|
[24] |
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 2013; 13(9): 752–761
CrossRef
Pubmed
Google scholar
|
[25] |
Eckerle I, Müller MA, Kallies S, Gotthardt DN, Drosten C. In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection. Virol J 2013, 23;10:359
CrossRef
Pubmed
Google scholar
|
[26] |
Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, Selim MA, Al Mutairi M, Al Nakhli D, Al Aidaroos AY, Al Sherbeeni N, Al-Khashan HI, Memish ZA, Albarrak AM. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 2014; 29: 301–306
CrossRef
Pubmed
Google scholar
|
[27] |
Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Al-Rabeeah AA, Assiri A, Alhakeem RF, AlRabiah FA, Al Hajjar S, Albarrak A, Flemban H, Balkhy H, Barry M, Alhassan S, Alsubaie S, Zumla A. Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study. Clin Microbiol Infect 2014; 20(5): 469–474
CrossRef
Pubmed
Google scholar
|
[28] |
Al-Abdallat MM, Payne DC, Alqasrawi S, Rha B, Tohme RA, Abedi GR, Al Nsour M, Iblan I, Jarour N, Farag NH, Haddadin A, Al-Sanouri T, Tamin A, Harcourt JL, Kuhar DT, Swerdlow DL, Erdman DD, Pallansch MA, Haynes LM, Gerber SI, Sabri N, Al Azhari M, Khazali H, Al Maayah M, Bilbeisi A, Dawood N, Al Zubi B, Meflih J, Mounds T, Fitzner J, Eltom A, Mafi A, Miao C, Caidi H, Trivedi S, Kamili S, Hall AJ, Curns A, Moore J, Pham H, Zimmerman C, Farnon E, Giorgi G, Gerber R. Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description. Clin Infect Dis 2014; 59(9): 1225–1233
CrossRef
Pubmed
Google scholar
|
[29] |
Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA; KSA MERS-CoV Investigation Team. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2013; 369(5): 407–416
CrossRef
Pubmed
Google scholar
|
[30] |
Al-Tawfiq JA, Hinedi K, Ghandour J, Khairalla H, Musleh S, Ujayli A, Memish ZA. Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 2014; 59(2): 160–165
CrossRef
Pubmed
Google scholar
|
[31] |
Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, Hawa H, Alothman A, Khaldi A, Al Raiy B. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389–397
CrossRef
Pubmed
Google scholar
|
[32] |
Thabet F, Chehab M, Bafaqih H, Al Mohaimeed S. Middle East respiratory syndrome coronavirus in children. Saudi Med J 2015; 36(4): 484–486
CrossRef
Pubmed
Google scholar
|
[33] |
Denison MR. Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Pediatr Infect Dis J 2004; 23(11 Suppl): S207–S214
CrossRef
Pubmed
Google scholar
|
[34] |
Bin Seo Y, Heo JY, Song MS, Lee J, Kim EH, Park SJ, Kwon HI, Kim SM, Kim YI, Si YJ, Lee IW, Baek YH, Choi WS, Min J, Jeong HW, Choi YK. Environmental contamination and viral shedding in MERS patients during MERS-CoV Outbreak in South Korea. Clin Infect Dis 2016; 62(6):755–760
CrossRef
Pubmed
Google scholar
|
[35] |
Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 2014; 20(3): 233–241
CrossRef
Pubmed
Google scholar
|
[36] |
de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens RW, Posthuma CC, van der Meer Y, Bárcena M, Haagmans BL, Snijder EJ, van den Hoogen BG. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-a treatment. J Gen Virol 2013; 94(Pt 8): 1749–1760
CrossRef
Pubmed
Google scholar
|
[37] |
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel b coronavirus replication by a combination of interferon-a2b and ribavirin. Sci Rep 2013; 3: 1686
CrossRef
Pubmed
Google scholar
|
[38] |
Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, Almakhlafi GA, Albarrak MM, Memish ZA, Albarrak AM. Ribavirin and interferon α-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 2014; 14(11): 1090–1095
CrossRef
Pubmed
Google scholar
|
[39] |
Chan JF, Chan KH, Kao RY, To KK, Zheng BJ, Li CP, Li PT, Dai J, Mok FK, Chen H, Hayden FG, Yuen KY. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013; 67(6): 606–616
CrossRef
Pubmed
Google scholar
|
[40] |
Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 2004; 101(8):2536–2541
Pubmed
|
[41] |
ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, Kuiken T, de Kruif J, Preiser W, Spaan W, Gelderblom HR, Goudsmit J , Osterhaus AD. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 2004; 363(9427):2139–2141
CrossRef
Pubmed
Google scholar
|
[42] |
Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 2004; 10(8):871–875
CrossRef
Pubmed
Google scholar
|
[43] |
Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng CT, Jiang S, Li F, Zhou Y. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol 2014; 88(12): 7045–7053
CrossRef
Pubmed
Google scholar
|
[44] |
Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, Liu Q, Wang L, Feng Y, Wang Y, Zheng BJ, Yuen KY, Jiang S, Dimitrov DS. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol 2014; 88(14): 7796–7805
CrossRef
Pubmed
Google scholar
|
[45] |
Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, Gao F, Li D, Wang R, Guo J, Fu L, Yuen KY, Zheng BJ, Wang X, Zhang L. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med 2014; 6(234): 234ra59
CrossRef
Pubmed
Google scholar
|
[46] |
Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, Avnir Y, Tallarico AS, Sheehan J, Zhu Q, Baric RS, Marasco WA. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci USA 2014; 111(19): E2018–E2026
CrossRef
Pubmed
Google scholar
|
[47] |
Ying T, Li H, Lu L, Dimitrov DS, Jiang S. Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections. Microbes Infect 2015;17(2):142–148.
CrossRef
Pubmed
Google scholar
|
[48] |
Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C, Ye S, Yuen KY, Zhang R, Jiang S. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 2014; 5: 3067
CrossRef
Pubmed
Google scholar
|
[49] |
Borio L, Cox E, Lurie N. Combating Emerging Threats—Accelerating the Availability of Medical Therapies. N Engl J Med 2015; 373(11): 993–995
CrossRef
Pubmed
Google scholar
|
[50] |
. Haagmans BL, van den Brand JM, Raj VS, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus AD. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science 2016; 351(6268): 77–81
Pubmed
|
/
〈 | 〉 |