Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea

Muhammad Waqas, Shasha Zhang, Zuhong He, Mingliang Tang, Renjie Chai

PDF(400 KB)
PDF(400 KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (3) : 237-249. DOI: 10.1007/s11684-016-0464-9
REVIEW

Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea

Author information +
History +

Abstract

Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

Keywords

inner ear / cochlea / hair cell / regeneration / Wnt / Notch / signaling pathways

Cite this article

Download citation ▾
Muhammad Waqas, Shasha Zhang, Zuhong He, Mingliang Tang, Renjie Chai. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea. Front. Med., 2016, 10(3): 237‒249 https://doi.org/10.1007/s11684-016-0464-9

References

[1]
Roberson DW, Rubel EW. Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 1994; 15(1): 28–34
Pubmed
[2]
Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Rubel EW, Cheng AG, Zuo J. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141(4): 816–829
CrossRef Pubmed Google scholar
[3]
Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge AS. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Rep 2014; 2(3): 311–322
CrossRef Pubmed Google scholar
[4]
Cruz RM, Lambert PR, Rubel EW. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch Otolaryngol Head Neck Surg 1987; 113(10): 1058–1062
CrossRef Pubmed Google scholar
[5]
Corwin JT, Oberholtzer JC. Fish n’ chicks: model recipes for hair-cell regeneration? Neuron 1997; 19(5): 951–954
CrossRef Pubmed Google scholar
[6]
Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 2007; 51(6-7): 633–647
CrossRef Pubmed Google scholar
[7]
Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988; 240(4860): 1772–1774
CrossRef Pubmed Google scholar
[8]
Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 1988; 240(4860): 1774–1776
CrossRef Pubmed Google scholar
[9]
Cotanche DA, Saunders JC, Tilney LG. Hair cell damage produced by acoustic trauma in the chick cochlea. Hear Res 1987; 25(2-3): 267–286
CrossRef Pubmed Google scholar
[10]
Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 2006; 7(11): 837–849
CrossRef Pubmed Google scholar
[11]
Schimmang T. Expression and functions of FGF ligands during early otic development. Int J Dev Biol 2007; 51(6-7): 473–481
CrossRef Pubmed Google scholar
[12]
Groves AK, Fekete DM. Shaping sound in space: the regulation of inner ear patterning. Development 2012; 139(2): 245–257
CrossRef Pubmed Google scholar
[13]
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9: 66
CrossRef Pubmed Google scholar
[14]
Zak M, Klis SF, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47(Pt B):247–258
[15]
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20(1): 781–810
CrossRef Pubmed Google scholar
[16]
Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14(1): 59–88
CrossRef Pubmed Google scholar
[17]
Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 2005; 4(1): 2
CrossRef Pubmed Google scholar
[18]
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3): 469–480
CrossRef Pubmed Google scholar
[19]
Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin. Cell Signal 2008; 20(10): 1697–1704
CrossRef Pubmed Google scholar
[20]
van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136(19): 3205–3214
CrossRef Pubmed Google scholar
[21]
Jacques BE, Puligilla C, Weichert RM, Ferrer-Vaquer A, Hadjantonakis AK, Kelley MW, Dabdoub A. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Development 2012; 139(23): 4395–4404
CrossRef Pubmed Google scholar
[22]
Shi F, Hu L, Jacques BE, Mulvaney JF, Dabdoub A, Edge AS. b-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 2014; 34(19): 6470–6479
CrossRef Pubmed Google scholar
[23]
Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM. Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 2003; 261(1): 149–164
CrossRef Pubmed Google scholar
[24]
Jin YR, Yoon JK. The R-spondin family of proteins: emerging regulators of WNT signaling. Int J Biochem Cell Biol 2012; 44(12): 2278–2287
CrossRef Pubmed Google scholar
[25]
Mulvaney JF, Yatteau A, Sun WW, Jacques B, Takubo K, Suda T, Yamada W, Dabdoub A. Secreted factor R-Spondin 2 is involved in refinement of patterning of the mammalian cochlea. Dev Dyn 2013; 242(2): 179–188
CrossRef Pubmed Google scholar
[26]
de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, Stange DE, van Es JE, Guardavaccaro D, Schasfoort RB, Mohri Y, Nishimori K, Mohammed S, Heck AJ, Clevers H. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476(7360): 293–297
CrossRef Pubmed Google scholar
[27]
de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol 2012; 13(3): 242
CrossRef Pubmed Google scholar
[28]
Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AG. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 2011; 12(4): 455–469
CrossRef Pubmed Google scholar
[29]
Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H. Dynamic expression of Lgr6 in the developing and mature mouse cochlea. Front Cell Neurosci 2015; 9: 165
CrossRef Pubmed Google scholar
[30]
Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 2012; 109(21): 8167–8172
CrossRef Pubmed Google scholar
[31]
He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 2004; 131(8): 1663–1677
CrossRef Pubmed Google scholar
[32]
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132(20): 4421–4436
CrossRef Pubmed Google scholar
[33]
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4(2): 68–75
CrossRef Pubmed Google scholar
[34]
Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006; 281(32): 22429–22433
CrossRef Pubmed Google scholar
[35]
Dabdoub A, Kelley MW. Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol 2005; 64(4): 446–457
CrossRef Pubmed Google scholar
[36]
Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih JC, Rubin JS, Salinas PC, Kelley MW. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 2003; 130(11): 2375–2384
CrossRef Pubmed Google scholar
[37]
Lewis J, Davies A. Planar cell polarity in the inner ear: how do hair cells acquire their oriented structure? J Neurobiol 2002; 53(2): 190–201
CrossRef Pubmed Google scholar
[38]
Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 2007; 306(1): 121–133
CrossRef Pubmed Google scholar
[39]
Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147–2156
CrossRef Pubmed Google scholar
[40]
Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423(6936): 173–177
CrossRef Pubmed Google scholar
[41]
Ren DD, Kelly M, Kim SM, Grimsley-Myers CM, Chi FL, Chen P. Testin interacts with vangl2 genetically to regulate inner ear sensory cell orientation and the normal development of the female reproductive tract in mice. Dev Dyn 2013; 242(12): 1454–1465
CrossRef Pubmed Google scholar
[42]
Lu X, Borchers AG, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 2004; 430(6995): 93–98
CrossRef Pubmed Google scholar
[43]
Jones C, Qian D, Kim SM, Li S, Ren D, Knapp L, Sprinzak D, Avraham KB, Matsuzaki F, Chi F, Chen P. Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear. Dev Biol 2014; 395(1): 62–72
CrossRef Pubmed Google scholar
[44]
Sipe CW, Lu X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development 2011; 138(16): 3441–3449
CrossRef Pubmed Google scholar
[45]
Kirjavainen A, Laos M, Anttonen T, Pirvola U. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea. Biol Open 2015; 4(4): 516–526
CrossRef Pubmed Google scholar
[46]
Andre P, Wang Q, Wang N, Gao B, Schilit A, Halford MM, Stacker SA, Zhang X, Yang Y. The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2. J Biol Chem 2012; 287(53): 44518–44525
CrossRef Pubmed Google scholar
[47]
Romero-Carvajal A, Navajas Acedo J, Jiang L, Kozlovskaja-Gumbrienė A, Alexander R, Li H, Piotrowski T. Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways. Dev Cell 2015; 34(3): 267–282
CrossRef Pubmed Google scholar
[48]
Head JR, Gacioch L, Pennisi M, Meyers JR. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Dev Dyn 2013; 242(7): 832–846
CrossRef Pubmed Google scholar
[49]
Jacques BE, Montgomery WH 4th, Uribe PM, Yatteau A, Asuncion JD, Resendiz G, Matsui JI, Dabdoub A. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Dev Neurobiol 2014; 74(4): 438–456
CrossRef Pubmed Google scholar
[50]
Jiang L, Romero-Carvajal A, Haug JS, Seidel CW, Piotrowski T. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc Natl Acad Sci USA 2014; 111(14): E1383–E1392
CrossRef Pubmed Google scholar
[51]
Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 2006; 5(12): 997–1014
CrossRef Pubmed Google scholar
[52]
Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgård R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008; 40(11): 1291–1299
CrossRef Pubmed Google scholar
[53]
Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci 2012; 32(28): 9639–9648
CrossRef Pubmed Google scholar
[54]
Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May LA, Zuo J, Cunningham LL, Cheng AG. Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015; 6: 6613
CrossRef Pubmed Google scholar
[55]
Shi F, Hu L, Edge AS. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 2013; 110(34): 13851–13856
CrossRef Pubmed Google scholar
[56]
Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22(4): 1172–1183
CrossRef Pubmed Google scholar
[57]
Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002; 22(4): 1184–1193
CrossRef Pubmed Google scholar
[58]
Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AG. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 2013; 140(6): 1196–1206
CrossRef Pubmed Google scholar
[59]
Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284(5421): 1837–1841
CrossRef Pubmed Google scholar
[60]
Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002; 129(10): 2495–2505
Pubmed
[61]
Shi F, Cheng YF, Wang XL, Edge AS. β-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. J Biol Chem 2010; 285(1): 392–400
CrossRef Pubmed Google scholar
[62]
Kuo BR, Baldwin EM, Layman WS, Taketo MM, Zuo J. In vivo cochlear hair cell generation and survival by coactivation of β-catenin and Atoh1. J Neurosci 2015; 35(30): 10786–10798
CrossRef Pubmed Google scholar
[63]
Lu X, Sun S, Qi J, Li W, Liu L, Zhang Y, Chen Y, Zhang S, Wang L, Miao D, Chai R, Li H. Bmi1 regulates the proliferation of cochlear supporting cells via the canonical Wnt signaling pathway. Mol Neurobiol 2016 Feb 3. [Epub ahead of print] doi: 10.1007/s12035-016-9686-8
Pubmed
[64]
Liu L, Chen Y, Qi J, Zhang Y, He Y, Ni W, Li W, Zhang S, Sun S, Taketo MM, Wang L, Chai R, Li H. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Death Dis 2016; 7(3): e2136
CrossRef Pubmed Google scholar
[65]
Murata J, Ohtsuka T, Tokunaga A, Nishiike S, Inohara H, Okano H, Kageyama R. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res 2009; 87(16): 3521–3534
CrossRef Pubmed Google scholar
[66]
Harper JW. Protein destruction: adapting roles for Cks proteins. Curr Biol 2001; 11(11): R431–R435
CrossRef Pubmed Google scholar
[67]
Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126(8): 1581–1590
Pubmed
[68]
Löwenheim H, Furness DN, Kil J, Zinn C, Göltig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA 1999; 96(7): 4084–4088
CrossRef Pubmed Google scholar
[69]
Doetzlhofer A, White P, Lee YS, Groves A, Segil N. Prospective identification and purification of hair cell and supporting cell progenitors from the embryonic cochlea. Brain Res 2006; 1091(1): 282–288
CrossRef Pubmed Google scholar
[70]
White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006; 441(7096): 984–987
CrossRef Pubmed Google scholar
[71]
Ono K, Nakagawa T, Kojima K, Matsumoto M, Kawauchi T, Hoshino M, Ito J. Silencing p27 reverses post-mitotic state of supporting cells in neonatal mouse cochleae. Mol Cell Neurosci 2009; 42(4): 391–398
CrossRef Pubmed Google scholar
[72]
Nakayama KI, Hatakeyama S, Nakayama K. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 2001; 282(4): 853–860
CrossRef Pubmed Google scholar
[73]
Minoda R, Izumikawa M, Kawamoto K, Zhang H, Raphael Y. Manipulating cell cycle regulation in the mature cochlea. Hear Res 2007; 232(1-2): 44–51
CrossRef Pubmed Google scholar
[74]
Oesterle EC, Chien WM, Campbell S, Nellimarla P, Fero ML. p27(Kip1) is required to maintain proliferative quiescence in the adult cochlea and pituitary. Cell Cycle 2011; 10(8): 1237–1248
CrossRef Pubmed Google scholar
[75]
Walters BJ, Liu Z, Crabtree M, Coak E, Cox BC, Zuo J. Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing. J Neurosci 2014; 34(47): 15751–15763
CrossRef Pubmed Google scholar
[76]
Laine H, Doetzlhofer A, Mantela J, Ylikoski J, Laiho M, Roussel MF, Segil N, Pirvola U. p19(Ink4d) and p21(Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. J Neurosci 2007; 27(6): 1434–1444
CrossRef Pubmed Google scholar
[77]
Ji P, Zhu L. Using kinetic studies to uncover new Rb functions in inhibiting cell cycle progression. Cell Cycle 2005; 4(3): 373–375
CrossRef Pubmed Google scholar
[78]
Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, Zhang DS, García-Añoveros J, Hinds PW, Corwin JT, Corey DP, Chen ZY. Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 2005; 307(5712): 1114–1118
CrossRef Pubmed Google scholar
[79]
Rocha-Sanchez SM, Scheetz LR, Contreras M, Weston MD, Korte M, McGee J, Walsh EJ. Mature mice lacking Rbl2/p130 gene have supernumerary inner ear hair cells and supporting cells. J Neurosci 2011; 31(24): 8883–8893
CrossRef Pubmed Google scholar
[80]
Aster JC. In brief: Notch signalling in health and disease. J Pathol 2014; 232(1): 1–3
CrossRef Pubmed Google scholar
[81]
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138(17): 3593–3612
CrossRef Pubmed Google scholar
[82]
D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010; 92: 73–129
CrossRef Pubmed Google scholar
[83]
Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2): 216–233
CrossRef Pubmed Google scholar
[84]
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7(9): 678–689
CrossRef Pubmed Google scholar
[85]
Neves J, Abelló G, Petrovic J, Giraldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 2013; 55(1): 96–112
CrossRef Pubmed Google scholar
[86]
Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194(3): 237–255
CrossRef Pubmed Google scholar
[87]
Murata J, Ikeda K, Okano H. Notch signaling and the developing inner ear. Adv Exp Med Biol 2012; 727: 161–173
CrossRef Pubmed Google scholar
[88]
Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 1998; 9(6): 583–589
CrossRef Pubmed Google scholar
[89]
Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 2005; 132(3): 541–551
CrossRef Pubmed Google scholar
[90]
Chitnis AB. The role of Notch in lateral inhibition and cell fate specification. Mol Cell Neurosci 1995; 6(4): 311–321
CrossRef Pubmed Google scholar
[91]
Bryant J, Goodyear RJ, Richardson GP. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull 2002; 63(1): 39–57
CrossRef Pubmed Google scholar
[92]
Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7): 1277–1286
CrossRef Pubmed Google scholar
[93]
Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006; 2(1): e4
CrossRef Pubmed Google scholar
[94]
Munnamalai V, Hayashi T, Bermingham-McDonogh O. Notch prosensory effects in the mammalian cochlea are partially mediated by Fgf20. J Neurosci 2012; 32(37): 12876–12884
CrossRef Pubmed Google scholar
[95]
Hartman BH, Reh TA, Bermingham-McDonogh O. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36): 15792–15797
CrossRef Pubmed Google scholar
[96]
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS ONE 2012; 7(3): e34123
CrossRef Pubmed Google scholar
[97]
Pan W, Jin Y, Chen J, Rottier RJ, Steel KP, Kiernan AE. Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 2013; 33(41): 16146–16157
CrossRef Pubmed Google scholar
[98]
Daudet N, Ariza-McNaughton L, Lewis J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 2007; 134(12): 2369–2378
CrossRef Pubmed Google scholar
[99]
Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 2001; 21(13): 4712–4720
Pubmed
[100]
Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 2005; 132(19): 4353–4362
CrossRef Pubmed Google scholar
[101]
Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999; 21(3): 289–292
CrossRef Pubmed Google scholar
[102]
Petrovic J, Gálvez H, Neves J, Abelló G, Giraldez F. Differential regulation of Hes/Hey genes during inner ear development. Dev Neurobiol 2015; 75(7): 703–720
CrossRef Pubmed Google scholar
[103]
Ma EY, Rubel EW, Raible DW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 2008; 28(9): 2261–2273
CrossRef Pubmed Google scholar
[104]
Daudet N, Gibson R, Shang J, Bernard A, Lewis J, Stone J. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev Biol 2009; 326(1): 86–100
CrossRef Pubmed Google scholar
[105]
Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007; 307(1): 165–178
CrossRef Pubmed Google scholar
[106]
Batts SA, Shoemaker CR, Raphael Y. Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hear Res 2009; 249(1-2): 15–22
CrossRef Pubmed Google scholar
[107]
Korrapati S, Roux I, Glowatzki E, Doetzlhofer A. Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS ONE 2013; 8(8): e73276
CrossRef Pubmed Google scholar
[108]
Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge AS. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 2013; 77(1): 58–69
CrossRef Pubmed Google scholar
[109]
Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA. Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 2009; 10(3): 321–340
CrossRef Pubmed Google scholar
[110]
Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2008; 9(1): 65–89
CrossRef Pubmed Google scholar
[111]
Tona Y, Hamaguchi K, Ishikawa M, Miyoshi T, Yamamoto N, Yamahara K, Ito J, Nakagawa T. Therapeutic potential of a gamma-secretase inhibitor for hearing restoration in a guinea pig model with noise-induced hearing loss. BMC Neurosci 2014; 15(1): 66
CrossRef Pubmed Google scholar
[112]
Maass JC, Gu R, Basch ML, Waldhaus J, Lopez EM, Xia A, Oghalai JS, Heller S, Groves AK. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 2015; 9: 110
CrossRef Pubmed Google scholar
[113]
Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med (Berl) 2006; 84(1): 37–45
CrossRef Pubmed Google scholar
[114]
Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N. Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 2009; 16(1): 58–69
CrossRef Pubmed Google scholar
[115]
Li W, Wu J, Yang J, Sun S, Chai R, Chen ZY, Li H. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA 2015; 112(1): 166–171
CrossRef Pubmed Google scholar
[116]
Morrison A, Hodgetts C, Gossler A, Hrabé de Angelis M, Lewis J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 1999; 84(1-2): 169–172
CrossRef Pubmed Google scholar
[117]
Jayasena CS, Ohyama T, Segil N, Groves AK. Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode. Development 2008; 135(13): 2251–2261
CrossRef Pubmed Google scholar
[118]
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/β-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136(19): 3289–3299
CrossRef Pubmed Google scholar
[119]
Katoh M, Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17(4): 681–685
Pubmed
[120]
Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004; 7(12): 1310–1318
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the National Basic Research Program of China (973 Program, No. 2015CB965000), the National Natural Science Foundation of China (Nos. 81570911, 81470692, 81470687, 81371094, 81230019, 81500790, 81570921, 31500852, and 31501194), the Jiangsu Province Natural Science Foundation (Nos. BK20150022, BK20140620, and BK20150598), and the Fundamental Research Funds for the Central Universities (Nos. 2242014R30022, and 021414380037).

Compliance with ethics guidelines

Muhammad Waqas, Shasha Zhang, Zuhong He, Mingliang Tang, and Renjie Chai declare that they have no conflicts of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(400 KB)

Accesses

Citations

Detail

Sections
Recommended

/