Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model
Jiansong Huang, Yulan Zhou, Xiaoyu Su, Yuanjing Lyu, Lanlan Tao, Xiaofeng Shi, Ping Liu, Zhangbiao Long, Zheng Ruan, Bing Xiao, Wenda Xi, Quansheng Zhou, Jianhua Mao, Xiaodong Xi
Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model
We evaluated the roles of calpain cleavage-related mutations of the integrin β3 cytoplasmic tail in integrin αIIbβ3 bidirectional signaling using a trans-dominant inhibition model. Chimeric Tac-β3 proteins (i.e., Tac-β3, Tac-β3D741, Tac-β3D747, Tac-β3D754, Tac-β3D759, and Tac-β3DNITY) consisting of the extracellular and transmembrane domains of human IL-2 receptor (Tac) and the human integrin β3 cytoplasmic domain were stably expressed in the 123 CHO cells harboring human glycoprotein Ib-IX and wild-type integrin αIIbβ3. The different cells were assayed for stable adhesion and spreading on immobilized fibrinogen, and for binding soluble fibrinogen representing outside-in and inside-out signaling events, respectively. The chimeric protein Tac-β3 inhibited, and Tac-β3DNITY partially attenuated stable adhesion and spreading. Tac-β3, Tac-β3D759, Tac-β3DNITY, and Tac-β3D754, but not Tac-β3D747 or Tac-β3D741, impaired the soluble fibrinogen binding. Results indicated that the bidirectional signaling was significantly inhibited by Tac-β3 and Tac-β3DNITY, albeit to a much lesser extent. Moreover, only inside-out signaling was impaired in the 123/Tac-β3D759 and 123/Tac-β3D754 cells in contrast to an intact bidirectional signaling in the 123/Tac-β3D747 and 123/Tac-β3D741 cells. In conclusion, the calpain cleavage of integrin β3 resulted in the regulatory effects on signaling by interrupting its interaction with cytoplasmic proteins rather than altering its conformation, and may thus regulate platelet function.
integrin β3 / signal transduction / trans-dominant inhibition model
[1] |
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–687
CrossRef
Pubmed
Google scholar
|
[2] |
Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science 2009; 324(5929): 895–899
CrossRef
Pubmed
Google scholar
|
[3] |
Li Q, Tang Q, Zhang P, Wang Z, Zhao T, Zhou J, Li H, Ding Q, Li W, Hu F, Du Y, Yuan H, Chen S, Gao J, Zhan J, You J. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes. Biomaterials 2015; 57: 1–11
CrossRef
Pubmed
Google scholar
|
[4] |
Bennett JS. Structure and function of the platelet integrin αIIbβ3. J Clin Invest 2005; 115(12): 3363–3369
CrossRef
Pubmed
Google scholar
|
[5] |
Bennett JS. Regulation of integrins in platelets. Biopolymers 2015; 104(4): 323–333
CrossRef
Pubmed
Google scholar
|
[6] |
Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science 2003; 300(5620): 795–798
CrossRef
Pubmed
Google scholar
|
[7] |
Ginsberg MH. Integrin activation. BMB Rep 2014; 47(12): 655–659
CrossRef
Pubmed
Google scholar
|
[8] |
Ma YQ, Qin J, Plow EF. Platelet integrin α(IIb)β(3): activation mechanisms. J Thromb Haemost 2007; 5(7): 1345–1352
CrossRef
Pubmed
Google scholar
|
[9] |
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8(1): 6–16
CrossRef
Pubmed
Google scholar
|
[10] |
Huang J, Shi X, Xi W, Liu P, Long Z, Xi X. Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy. J Hematol Oncol 2015; 8(1): 62
CrossRef
Pubmed
Google scholar
|
[11] |
Su X, Mi J, Yan J, Flevaris P, Lu Y, Liu H, Ruan Z, Wang X, Kieffer N, Chen S, Du X, Xi X. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αIIbβ3 with Src kinase. Blood 2008; 112(3): 592–602
CrossRef
Pubmed
Google scholar
|
[12] |
Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, Cho J, Lam SC, Du X. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 2013; 503(7474): 131–135
CrossRef
Pubmed
Google scholar
|
[13] |
Gong H, Shen B, Flevaris P, Chow C, Lam SC, Voyno-Yasenetskaya TA, Kozasa T, Du X. G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science 2010; 327(5963): 340–343
CrossRef
Pubmed
Google scholar
|
[14] |
Xiang B, Zhang G, Ye S, Zhang R, Huang C, Liu J, Tao M, Ruan C, Smyth SS, Whiteheart SW, Li Z. Characterization of a novel integrin binding protein, VPS33B, which is important for platelet activation and in vivo thrombosis and hemostasis. Circulation 2015; 132(24): 2334–2344
CrossRef
Pubmed
Google scholar
|
[15] |
Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature 1999; 401(6755): 808–811
CrossRef
Pubmed
Google scholar
|
[16] |
Zou Z, Chen H, Schmaier AA, Hynes RO, Kahn ML. Structure-function analysis reveals discrete β3 integrin inside-out and outside-in signaling pathways in platelets. Blood 2007; 109(8): 3284– 3290
CrossRef
Pubmed
Google scholar
|
[17] |
Lerea KM, Cordero KP, Sakariassen KS, Kirk RI, Fried VA. Phosphorylation sites in the integrin β3 cytoplasmic domain in intact platelets. J Biol Chem 1999; 274(4): 1914–1919
CrossRef
Pubmed
Google scholar
|
[18] |
Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SC, Du X. Tyrosine phosphorylation of the integrin β3 subunit regulates β3 cleavage by calpain. J Biol Chem 2006; 281(40): 29426–29430
CrossRef
Pubmed
Google scholar
|
[19] |
Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH. Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol Cell Biol 2007; 27(17): 6038–6052
CrossRef
Pubmed
Google scholar
|
[20] |
Kuchay SM, Wieschhaus AJ, Marinkovic M, Herman IM, Chishti AH. Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 2012; 10(6): 1120– 1132
CrossRef
Pubmed
Google scholar
|
[21] |
Ablooglu AJ, Kang J, Petrich BG, Ginsberg MH, Shattil SJ. Antithrombotic effects of targeting αIIbβ3 signaling in platelets. Blood 2009; 113(15): 3585–3592
CrossRef
Pubmed
Google scholar
|
[22] |
Tao L, Zhang Y, Xi X, Kieffer N. Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation. Protein Cell 2010; 1(7): 627–637
CrossRef
Pubmed
Google scholar
|
[23] |
Gu M, Xi X, Englund GD, Berndt MC, Du X. Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin α(IIb)β(3) using a reconstituted mammalian cell expression model. J Cell Biol 1999; 147(5): 1085–1096
CrossRef
Pubmed
Google scholar
|
[24] |
Xi X, Bodnar RJ, Li Z, Lam SC, Du X. Critical roles for the COOH-terminal NITY and RGT sequences of the integrin β3 cytoplasmic domain in inside-out and outside-in signaling. J Cell Biol 2003; 162(2): 329–339
CrossRef
Pubmed
Google scholar
|
[25] |
Chen YP, O’Toole TE, Shipley T, Forsyth J, LaFlamme SE, Yamada KM, Shattil SJ, Ginsberg MH. “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains. J Biol Chem 1994; 269(28): 18307–18310
Pubmed
|
[26] |
Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J Cell Biol 2000; 151(7): 1549–1560
CrossRef
Pubmed
Google scholar
|
[27] |
Mastrangelo AM, Homan SM, Humphries MJ, LaFlamme SE. Amino acid motifs required for isolated β cytoplasmic domains to regulate ‘in trans’ β1 integrin conformation and function in cell attachment. J Cell Sci 1999; 112(Pt 2): 217–229
Pubmed
|
[28] |
Honda S, Shirotani-Ikejima H, Tadokoro S, Maeda Y, Kinoshita T, Tomiyama Y, Miyata T. Integrin-linked kinase associated with integrin activation. Blood 2009; 113(21): 5304–5313
CrossRef
Pubmed
Google scholar
|
[29] |
Iacobucci I, Di Rorà AG, Falzacappa MV, Agostinelli C, Derenzini E, Ferrari A, Papayannidis C, Lonetti A, Righi S, Imbrogno E, Pomella S, Venturi C, Guadagnuolo V, Cattina F, Ottaviani E, Abbenante MC, Vitale A, Elia L, Russo D, Zinzani PL, Pileri S, Pelicci PG, Martinelli G.In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol 2015; 8(1): 125
CrossRef
Pubmed
Google scholar
|
[30] |
Du X, Saido TC, Tsubuki S, Indig FE, Williams MJ, Ginsberg MH. Calpain cleavage of the cytoplasmic domain of the integrin β3 subunit. J Biol Chem 1995; 270(44): 26146–26151
CrossRef
Pubmed
Google scholar
|
[31] |
Tao L, Hang J, Lü Y, Zhou Y, Cui X, Ruan Z, Xi X. Analysis of the regulatory mechanisms of the RGT sequence of integrin β3 cytoplasmic tail in signal transduction by using a dominant negative model. Chin J Cell Biol 2012; 34(2): 135–145
|
[32] |
Berrier AL, Jones CW, LaFlamme SE. Tac-β1 inhibits FAK activation and Src signaling. Biochem Biophys Res Commun 2008; 368(1): 62–67
CrossRef
Pubmed
Google scholar
|
[33] |
Calderwood DA, Tai V, Di Paolo G, De Camilli P, Ginsberg MH. Competition for talin results in trans-dominant inhibition of integrin activation. J Biol Chem 2004; 279(28): 28889–28895
CrossRef
Pubmed
Google scholar
|
[34] |
Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. The tyrosine kinase c-Src specifically binds to the active integrin αIIbβ3 to initiate outside-in signaling in platelets. J Biol Chem 2015; 290(25): 15825–15834
CrossRef
Pubmed
Google scholar
|
[35] |
Legate KR, Fässler R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci 2009; 122(Pt 2): 187–198
CrossRef
Pubmed
Google scholar
|
[36] |
Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, Plow EF, Ma YQ. Tyrosine phosphorylation of integrin β3 regulates kindlin-2 binding and integrin activation. J Biol Chem 2010; 285(40): 30370–30374
CrossRef
Pubmed
Google scholar
|
[37] |
Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J Cell Biol 2008; 181(3): 439–446
CrossRef
Pubmed
Google scholar
|
[38] |
Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A; ThromboGenomics Consortium, Filizola M, Ouwehand WH, Coller BS. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci USA 2015; 112(15): E1898–E1907
CrossRef
Pubmed
Google scholar
|
[39] |
Kato M, Chou TF, Yu CZ, DeModena J, Sternberg PW. LINKIN, a new transmembrane protein necessary for cell adhesion. eLife 2014; 3: e04449
CrossRef
Pubmed
Google scholar
|
[40] |
Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin αIIbβ3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem 1997; 272(3): 1694–1702
CrossRef
Pubmed
Google scholar
|
[41] |
Shi X, Yang J, Huang J, Long Z, Ruan Z, Xiao B, Xi X. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol Med Rep 2016; 13(3): 2447–2456
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |