Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells
Xiaoyu Wang, Yuxuan Gao, Haigang Shi, Na Liu, Wei Zhang, Hongbo Li
Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells
Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.
DCEF / migration / osteogenesis differentiation / rBMSCs / SDF-1/CXCR-4
[1] |
Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 2004; 32(1): 160–165
CrossRef
Pubmed
Google scholar
|
[2] |
Kumar A, Nune KC, Misra RD. Electric field-mediated growth of osteoblasts — the significant impact of dynamic flow of medium. Biomater Sci 2016; 4(1): 136–144
CrossRef
Pubmed
Google scholar
|
[3] |
De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003; 160(6): 909–918
CrossRef
Pubmed
Google scholar
|
[4] |
Fong EL, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials 2011; 32(2): 395–409
CrossRef
Pubmed
Google scholar
|
[5] |
Korohoda W, Grys M, Madeja Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell Mol Biol Lett 2013; 18(1): 102–119
CrossRef
Pubmed
Google scholar
|
[6] |
Vanegas-Acosta JC, Garzón-Alvarado DA, Lancellotti V. Numerical simulation of electrically stimulated osteogenesis in dental implants. Bioelectrochemistry 2014; 96: 21–36
CrossRef
Pubmed
Google scholar
|
[7] |
Funk RH, Monsees T, Ozkucur N. Electromagnetic effects: from cell biology to medicine. Prog Histochem Cytochem 2009; 43(4):177–264 doi: 10.1016/j.proghi.2008.07.001 PMID: 19167986
|
[8] |
Zhao M. Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 2009; 20(6): 674–682
CrossRef
Pubmed
Google scholar
|
[9] |
Chiang M, Robinson KR, Vanable JW Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp Eye Res 1992; 54(6): 999–1003
CrossRef
Pubmed
Google scholar
|
[10] |
Zhao Z, Watt C, Karystinou A, Roelofs AJ, McCaig CD, Gibson IR, De Bari C. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater 2011; 22: 344–358
Pubmed
|
[11] |
Lee JW, Lee J, Moon EY. HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP. Anticancer Res 2014; 34(7): 3447–3455
Pubmed
|
[12] |
Pullar CE, Isseroff RR. Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 2005; 118(Pt 9): 2023–2034
CrossRef
Pubmed
Google scholar
|
[13] |
Finkelstein E, Chang W, Chao PH, Gruber D, Minden A, Hung CT, Bulinski JC. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J Cell Sci 2004; 117(Pt 8): 1533–1545
CrossRef
Pubmed
Google scholar
|
[14] |
Pullar CE, Isseroff RR, Nuccitelli R. Cyclic AMP-dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskeleton 2001; 50(4): 207–217
CrossRef
Pubmed
Google scholar
|
[15] |
Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 2007; 1183: 138–147
CrossRef
Pubmed
Google scholar
|
[16] |
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147
CrossRef
Pubmed
Google scholar
|
[17] |
McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci 2009; 122(Pt 23): 4267–4276
CrossRef
Pubmed
Google scholar
|
[18] |
Yao L, McCaig CD, Zhao M. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 2009; 19(9): 855–868
CrossRef
Pubmed
Google scholar
|
[19] |
Zhao Z, Qin L, Reid B, Pu J, Hara T, Zhao M. Directing migration of endothelial progenitor cells with applied DC electric fields. Stem Cell Res (Amst) 2012; 8(1): 38–48
CrossRef
Pubmed
Google scholar
|
[20] |
Hammerick KE, Longaker MT, Prinz FB. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun 2010; 397(1): 12–17
CrossRef
Pubmed
Google scholar
|
[21] |
Ferrier J, Ross SM, Kanehisa J, Aubin JE. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol 1986; 129(3): 283–288
CrossRef
Pubmed
Google scholar
|
[22] |
Özkucur N, Monsees TK, Perike S, Do HQ, Funk RH. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS ONE 2009; 4(7): e6131
CrossRef
Pubmed
Google scholar
|
[23] |
Luo XF, Huang Y, Fan P, Peng B, Liu R, Bai H. Directed migration and morphological changes of cultured trophoblast cells in small electric fields. J Sichuan Univ (MedSci Edition ) (Sichuan Da Xue Xue Bao Yi Xue Ban) 2010; 41(5): 771–774, 802 (in Chinese) PMID:21302438
|
[24] |
Zhang J, Neoh KG, Hu X, Kang ET, Wang W. Combined effects of direct current stimulation and immobilized BMP-2 for enhancement of osteogenesis. Biotechnol Bioeng 2013; 110(5):1466–1475 doi: 10.1002/bit.24796
|
[25] |
Gamboa OL, Pu J, Townend J, Forrester JV, Zhao M, McCaig C, Lois N. Electrical estimulation of retinal pigment epithelial cells. Exp Eye Res 2010; 91(2): 195–204
CrossRef
Pubmed
Google scholar
|
[26] |
de Oliveira GL, de Lima KW, Colombini AM, Pinheiro DG, Panepucci RA, Palma PV, Brum DG, Covas DT, Simões BP, de Oliveira MC, Donadi EA, Malmegrim KC. Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. Cell Transplant 2015; 24(2): 151–165
CrossRef
Pubmed
Google scholar
|
[27] |
Siddiqui S, Arshad M. Osteogenic potential of punica granatum through matrix mineralization, cell cycle progression and runx2 gene expression in primary rat osteoblasts. Daru 2014; 22(1): 72
CrossRef
Pubmed
Google scholar
|
[28] |
Fernández I, Tiago DM, Laizé V, Leonor Cancela M, Gisbert E. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins. J Steroid Biochem Mol Biol 2014; 140: 34–43
CrossRef
Pubmed
Google scholar
|
[29] |
Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 2007; 41(3): 462–473
CrossRef
Pubmed
Google scholar
|
[30] |
Yilmaz G, Hwang S, Oto M, Kruse R, Rogers KJ, Bober MB, Cahill PJ, Shah SA. Surgical treatment of scoliosis in osteogenesis imperfecta with cement-augmented pedicle screw instrumentation. J Spinal Disord Tech 2014; 27(3): 174–180
CrossRef
Pubmed
Google scholar
|
[31] |
Luan J, Cui Y, Zhang Y, Zhou X, Zhang G, Han J. Effect of CXCR4 inhibitor AMD3100 on alkaline phosphatase activity and mineralization in osteoblastic MC3T3-E1 cells. Biosci Trends 2012; 6(2): 63–69
Pubmed
|
[32] |
Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 2011; 10(1): 9
CrossRef
Pubmed
Google scholar
|
[33] |
Kawakami Y, Ii M, Matsumoto T, Kuroda R, Kuroda T, Kwon SM, Kawamoto A, Akimaru H, Mifune Y, Shoji T, Fukui T, Kurosaka M, Asahara T. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. J Bone Miner Res 2015; 30(1): 95–105
CrossRef
Pubmed
Google scholar
|
[34] |
Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015; 5: 18353
CrossRef
Pubmed
Google scholar
|
[35] |
Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, Kucia M, Ratajczak MZ. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 2010; 127(11): 2554–2568
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |