Alternative splicing of inner-ear-expressed genes

Yanfei Wang, Yueyue Liu, Hongyun Nie, Xin Ma, Zhigang Xu

PDF(210 KB)
PDF(210 KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (3) : 250-257. DOI: 10.1007/s11684-016-0454-y
REVIEW
REVIEW

Alternative splicing of inner-ear-expressed genes

Author information +
History +

Abstract

Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca2+-activated K+ channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

Keywords

alternative splicing / inner ear / hearing loss / hair cells

Cite this article

Download citation ▾
Yanfei Wang, Yueyue Liu, Hongyun Nie, Xin Ma, Zhigang Xu. Alternative splicing of inner-ear-expressed genes. Front. Med., 2016, 10(3): 250‒257 https://doi.org/10.1007/s11684-016-0454-y

References

[1]
Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126(1): 37–47
CrossRef Pubmed Google scholar
[2]
Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10(11): 741–754
Pubmed
[3]
Lee CJ, Irizarry K. Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol Psychiatry 2003; 54(8): 771–776
CrossRef Pubmed Google scholar
[4]
Black DL, Grabowski PJ. Alternative pre-mRNA splicing and neuronal function. Prog Mol Subcell Biol 2003; 31: 187–216
CrossRef Pubmed Google scholar
[5]
Li Q, Lee JA, Black DL. Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 2007; 8(11): 819–831
CrossRef Pubmed Google scholar
[6]
Licatalosi DD, Darnell RB. Splicing regulation in neurologic disease. Neuron 2006; 52(1): 93–101
CrossRef Pubmed Google scholar
[7]
Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci 2006; 29(1): 259–277
CrossRef Pubmed Google scholar
[8]
Nakano Y, Jahan I, Bonde G, Sun X, Hildebrand MS, Engelhardt JF, Smith RJH, Cornell RA, Fritzsch B, Bánfi B. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet 2012; 8(10): e1002966
CrossRef Pubmed Google scholar
[9]
Ben Rebeh I, Morinière M, Ayadi L, Benzina Z, Charfedine I, Feki J, Ayadi H, Ghorbel A, Baklouti F, Masmoudi S. Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness. Mol Vis 2010; 16: 1898–1906
Pubmed
[10]
Ouyang XM, Xia XJ, Verpy E, Du LL, Pandya A, Petit C, Balkany T, Nance WE, Liu XZ. Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum Genet 2002; 111(1): 26–30
CrossRef Pubmed Google scholar
[11]
Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 2006; 79(6): 1040–1051
CrossRef Pubmed Google scholar
[12]
Nal N, Ahmed ZM, Erkal E, Alper OM, Lüleci G, Dinç O, Waryah AM, Ain Q, Tasneem S, Husnain T, Chattaraj P, Riazuddin S, Boger E, Ghosh M, Kabra M, Riazuddin S, Morell RJ, Friedman TB. Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing. Hum Mutat 2007; 28(10): 1014–1019
CrossRef Pubmed Google scholar
[13]
Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, Banin E, Sharon D. Exome sequencing identifies a founder frameshift mutation in an alternative exon of USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS ONE 2012; 7(12): e51566
CrossRef Pubmed Google scholar
[14]
Martin JF, Miano JM, Hustad CM, Copeland NG, Jenkins NA, Olson ENA. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol Cell Biol 1994; 14(3): 1647–1656
CrossRef Pubmed Google scholar
[15]
Sebastian S, Faralli H, Yao Z, Rakopoulos P, Palii C, Cao Y, Singh K, Liu QC, Chu A, Aziz A, Brand M, Tapscott SJ, Dilworth FJ. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev 2013; 27(11): 1247–1259
CrossRef Pubmed Google scholar
[16]
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456(7221): 470–476
CrossRef Pubmed Google scholar
[17]
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40(12): 1413–1415
CrossRef Pubmed Google scholar
[18]
Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 2004; 428(6986): 950–955
CrossRef Pubmed Google scholar
[19]
Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449(7158): 87–91
CrossRef Pubmed Google scholar
[20]
Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 2001; 68(1): 26–37
CrossRef Pubmed Google scholar
[21]
Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 2001; 27(1): 103–107
CrossRef Pubmed Google scholar
[22]
Bolz H, von Brederlow B, Ramírez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, del C-Salcedó Cabrera M, Vila MC, Molina OP, Gal A, Kubisch C. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 2001; 27(1): 108–112
CrossRef Pubmed Google scholar
[23]
Di Palma F, Pellegrino R, Noben-Trauth K. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 2001; 281(1-2): 31–41
CrossRef Pubmed Google scholar
[24]
Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Müller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci USA 2002; 99(23): 14946–14951
CrossRef Pubmed Google scholar
[25]
Xu Z, Peng AW, Oshima K, Heller S. MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J Neurosci 2008; 28(44): 11269–11276
CrossRef Pubmed Google scholar
[26]
Yonezawa S, Hanai A, Mutoh N, Moriyama A, Kageyama T. Redox-dependent structural ambivalence of the cytoplasmic domain in the inner ear-specific cadherin 23 isoform. Biochem Biophys Res Commun 2008; 366(1): 92–97
CrossRef Pubmed Google scholar
[27]
Xu Z, Oshima K, Heller S. PIST regulates the intracellular trafficking and plasma membrane expression of cadherin 23. BMC Cell Biol 2010; 11(1): 80
CrossRef Pubmed Google scholar
[28]
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37(8): 844–852
CrossRef Pubmed Google scholar
[29]
Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33(5): 591–601
CrossRef Pubmed Google scholar
[30]
Warzecha CC, Shen S, Xing Y, Carstens RP. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 2009; 6(5): 546–562
CrossRef Pubmed Google scholar
[31]
Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S, Guo W, Xing Y, Carstens RP. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010; 29(19): 3286–3300
CrossRef Pubmed Google scholar
[32]
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47(4): 360–378
CrossRef Pubmed Google scholar
[33]
Romanelli MG, Diani E, Lievens PM. New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14(11): 22906–22932
CrossRef Pubmed Google scholar
[34]
Miranda-Rottmann S, Kozlov AS, Hudspeth AJ. Highly specific alternative splicing of transcripts encoding BK channels in the chicken’s cochlea is a minor determinant of the tonotopic gradient. Mol Cell Biol 2010; 30(14): 3646–3660
CrossRef Pubmed Google scholar
[35]
Mann ZF, Kelley MW. Development of tonotopy in the auditory periphery. Hear Res 2011; 276(1-2): 2–15
CrossRef Pubmed Google scholar
[36]
Crawford AC, Fettiplace R. An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 1981; 312(1): 377–412
CrossRef Pubmed Google scholar
[37]
Art JJ, Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 1987; 385(1): 207–242
CrossRef Pubmed Google scholar
[38]
Fuchs PA, Nagai T, Evans MG. Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 1988; 8(7): 2460–2467
Pubmed
[39]
Navaratnam DS, Bell TJ, Tu TD, Cohen EL, Oberholtzer JC. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 1997; 19(5): 1077–1085
CrossRef Pubmed Google scholar
[40]
Rosenblatt KP, Sun ZP, Heller S, Hudspeth AJ. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 1997; 19(5): 1061–1075
CrossRef Pubmed Google scholar
[41]
Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. A molecular mechanism for electrical tuning of cochlear hair cells. Science 1999; 283(5399): 215–217
CrossRef Pubmed Google scholar
[42]
Jones EM, Gray-Keller M, Art JJ, Fettiplace R. The functional role of alternative splicing of Ca2+-activated K+ channels in auditory hair cells. Ann N Y Acad Sci 1999; 868(1): 379–385
CrossRef Pubmed Google scholar
[43]
Jones EM, Gray-Keller M, Fettiplace R. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 1999; 518(Pt 3): 653–665
CrossRef Pubmed Google scholar
[44]
Sakai Y, Harvey M, Sokolowski B. Identification and quantification of full-length BK channel variants in the developing mouse cochlea. J Neurosci Res 2011; 89(11): 1747–1760
CrossRef Pubmed Google scholar
[45]
Rüttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Müller M, Köpschall I, Pfister M, Münkner S, Rohbock K, Pfaff I, Rüsch A, Ruth P, Knipper M. Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 2004; 101(35): 12922–12927
CrossRef Pubmed Google scholar
[46]
Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999; 96(3): 437–446
CrossRef Pubmed Google scholar
[47]
Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999; 8(7): 1321–1328
CrossRef Pubmed Google scholar
[48]
Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 2006; 25(3): 642–652
CrossRef Pubmed Google scholar
[49]
Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F, Kachar B, Yamoah EN, Fritzsch B. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 2005; 25(40): 9285–9293
CrossRef Pubmed Google scholar
[50]
Scheffer DI, Shen J, Corey DP, Chen ZY. Gene expression by mouse inner ear hair cells during development. J Neurosci 2015; 35(16): 6366–6380
CrossRef Pubmed Google scholar
[51]
Shen J, Scheffer DI, Kwan KY, Corey DP. SHIELD: an integrative gene expression database for inner ear research. Database (Oxford) 2015, 2015:bav071
[52]
Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417(1): 15–27
CrossRef Pubmed Google scholar
[53]
Deol MS, Gluecksohn-Waelsch S. The role of inner hair cells in hearing. Nature 1979; 278(5701): 250–252
CrossRef Pubmed Google scholar
[54]
Deol MS. The inner ear in Bronx waltzer mice. Acta Otolaryngol 1981; 92(3-4): 331–336
CrossRef Pubmed Google scholar
[55]
Bock GR, Yates GK, Deol MS. Cochlear potentials in the Bronx waltzer mutant mouse. Neurosci Lett 1982; 34(1): 19–25
CrossRef Pubmed Google scholar
[56]
Horner KC, Lenoir M, Bock GR. Distortion product otoacoustic emissions in hearing-impaired mutant mice. J Acoust Soc Am 1985; 78(5): 1603–1611
CrossRef Pubmed Google scholar
[57]
Inagaki M, Kon K, Suzuki S, Kobayashi N, Kaga M, Nanba E. Characteristic findings of auditory brainstem response and otoacoustic emission in the Bronx waltzer mouse. Brain Dev 2006; 28(10): 617–624
CrossRef Pubmed Google scholar
[58]
Whitlon DS, Gabel C, Zhang X. Cochlear inner hair cells exist transiently in the fetal Bronx Waltzer (bv/bv) mouse. J Comp Neurol 1996; 364(3): 515–522
CrossRef Pubmed Google scholar
[59]
Sobkowicz HM, Inagaki M, August BK, Slapnick SM. Abortive synaptogenesis as a factor in the inner hair cell degeneration in the Bronx Waltzer (bv) mutant mouse. J Neurocytol 1999; 28(1): 17–38
CrossRef Pubmed Google scholar
[60]
Cheong MA, Steel KP. Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice. Hear Res 2002; 164(1-2): 179–189
CrossRef Pubmed Google scholar
[61]
Bussoli TJ, Kelly A, Steel KP. Localization of the bronx waltzer (bv) deafness gene to mouse chromosome 5. Mamm Genome 1997; 8(10): 714–717
CrossRef Pubmed Google scholar
[62]
Calarco JA, Superina S, O’Hanlon D, Gabut M, Raj B, Pan Q, Skalska U, Clarke L, Gelinas D, van der Kooy D, Zhen M, Ciruna B, Blencowe BJ. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 2009; 138(5): 898–910
CrossRef Pubmed Google scholar
[63]
Moayedi Y, Basch ML, Pacheco NL, Gao SS, Wang R, Harrison W, Xiao N, Oghalai JS, Overbeek PA, Mardon G, Groves AK. The candidate splicing factor Sfswap regulates growth and patterning of inner ear sensory organs. PLoS Genet 2014; 10(1): e1004055
CrossRef Pubmed Google scholar
[64]
Chou TB, Zachar Z, Bingham PM. Developmental expression of a regulatory gene is programmed at the level of splicing. EMBO J 1987; 6(13): 4095–4104
Pubmed
[65]
Zachar Z, Chou TB, Bingham PM. Evidence that a regulatory gene autoregulates splicing of its transcript. EMBO J 1987; 6(13): 4105–4111
Pubmed
[66]
Zachar Z, Chou TB, Kramer J, Mims IP, Bingham PM. Analysis of autoregulation at the level of pre-mRNA splicing of the suppressor-of-white-apricot gene in Drosophila. Genetics 1994; 137(1): 139–150
Pubmed
[67]
Denhez F, Lafyatis R. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot. J Biol Chem 1994; 269(23): 16170–16179
Pubmed
[68]
Sarkissian M, Winne A, Lafyatis R. The mammalian homolog of suppressor-of-white-apricot regulates alternative mRNA splicing of CD45 exon 4 and fibronectin IIICS. J Biol Chem 1996; 271(49): 31106–31114
CrossRef Pubmed Google scholar
[69]
Lemaire R, Winne A, Sarkissian M, Lafyatis R. SF2 and SRp55 regulation of CD45 exon 4 skipping during T cell activation. Eur J Immunol 1999; 29(3): 823–837
CrossRef Pubmed Google scholar
[70]
Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabé de Angelis M. The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 2001; 98(7): 3873–3878
CrossRef Pubmed Google scholar
[71]
Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SD, Steel KP. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 2001; 10(5): 507–512
CrossRef Pubmed Google scholar
[72]
Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7): 1277–1286
CrossRef Pubmed Google scholar
[73]
Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006; 2(1): 27–38
CrossRef Pubmed Google scholar
[74]
Verduci L, Simili M, Rizzo M, Mercatanti A, Evangelista M, Mariani L, Rainaldi G, Pitto L. MicroRNA (miRNA)-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis. J Biol Chem 2010; 285(50): 39551–39563
CrossRef Pubmed Google scholar
[75]
Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, Zhu J. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell 2010; 38(1): 67–77
CrossRef Pubmed Google scholar
[76]
Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. MicroRNAs-10a and-10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2011; 286(6): 4150–4164
CrossRef Pubmed Google scholar
[77]
Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): 435–448
CrossRef Pubmed Google scholar
[78]
Boutz PL, Chawla G, Stoilov P, Black DL. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007; 21(1): 71–84
CrossRef Pubmed Google scholar
[79]
Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain Res 2006; 1111(1): 95–104
CrossRef Pubmed Google scholar
[80]
Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, Biesemeier DJ, Shomron N, Fekete DM, Hornstein E, Avraham KB. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci USA 2009; 106(19): 7915–7920
CrossRef Pubmed Google scholar
[81]
Lewis MA, Steel KP. MicroRNAs in mouse development and disease. Semin Cell Dev Biol 2010; 21(7): 774–780
CrossRef Pubmed Google scholar
[82]
Ushakov K, Rudnicki A, Avraham KB. MicroRNAs in sensorineural diseases of the ear. Front Mol Neurosci 2013; 6: 52
CrossRef Pubmed Google scholar
[83]
Moulton VR, Gillooly AR, Tsokos GC. Ubiquitination regulates expression of the serine/arginine-rich splicing factor 1 (SRSF1) in normal and systemic lupus erythematosus (SLE) T cells. J Biol Chem 2014; 289(7): 4126–4134
CrossRef Pubmed Google scholar
[84]
Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT, Sette C, Jones KT, Elliott DJ. SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 2004; 13(14): 1525–1534
CrossRef Pubmed Google scholar
[85]
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4: e07938<?Pub Caret?>
CrossRef Pubmed Google scholar
[86]
Henzl MT, O’Neal J, Killick R, Thalmann I, Thalmann R. OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hear Res 2001; 157(1-2): 100–111
CrossRef Pubmed Google scholar
[87]
Nelson RF, Glenn KA, Zhang Y, Wen H, Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJ, Paulson HL. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 2007; 27(19): 5163–5171
CrossRef Pubmed Google scholar
[88]
Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, Sakuma R, Luga V, Roncari L, Attisano L, Wrana JL. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009; 137(2): 295–307
CrossRef Pubmed Google scholar
[89]
Van Campenhout CA, Eitelhuber A, Gloeckner CJ, Giallonardo P, Gegg M, Oller H, Grant SG, Krappmann D, Ueffing M, Lickert H. Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases. Dev Cell 2011; 21(3): 479–491
CrossRef Pubmed Google scholar

Acknowledgements

Our laboratory is supported by grants from the National Basic Research Program of China (No. 2013CB967700), the National Natural Science Foundation of China (Nos. 31401007 and 31371355), the China Postdoctoral Science Foundation (No. 2014M560550), and the Fundamental Research Funds of Shandong University (Nos. 2014HW011 and 2015JC027). The funders had no role in the preparation of the manuscript.

Compliance with ethics guidelines

Yanfei Wang, Yueyue Liu, Hongyun Nie, Xin Ma, and Zhigang Xu declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/