Alternative splicing of inner-ear-expressed genes

Yanfei Wang , Yueyue Liu , Hongyun Nie , Xin Ma , Zhigang Xu

Front. Med. ›› 2016, Vol. 10 ›› Issue (3) : 250 -257.

PDF (210KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (3) : 250 -257. DOI: 10.1007/s11684-016-0454-y
REVIEW
REVIEW

Alternative splicing of inner-ear-expressed genes

Author information +
History +
PDF (210KB)

Abstract

Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca2+-activated K+ channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

Keywords

alternative splicing / inner ear / hearing loss / hair cells

Cite this article

Download citation ▾
Yanfei Wang, Yueyue Liu, Hongyun Nie, Xin Ma, Zhigang Xu. Alternative splicing of inner-ear-expressed genes. Front. Med., 2016, 10(3): 250-257 DOI:10.1007/s11684-016-0454-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126(1): 37–47

[2]

Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10(11): 741–754

[3]

Lee CJ, Irizarry K. Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol Psychiatry 2003; 54(8): 771–776

[4]

Black DL, Grabowski PJ. Alternative pre-mRNA splicing and neuronal function. Prog Mol Subcell Biol 2003; 31: 187–216

[5]

Li Q, Lee JA, Black DL. Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 2007; 8(11): 819–831

[6]

Licatalosi DD, Darnell RB. Splicing regulation in neurologic disease. Neuron 2006; 52(1): 93–101

[7]

Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci 2006; 29(1): 259–277

[8]

Nakano Y, Jahan I, Bonde G, Sun X, Hildebrand MS, Engelhardt JF, Smith RJH, Cornell RA, Fritzsch B, Bánfi B. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet 2012; 8(10): e1002966

[9]

Ben Rebeh I, Morinière M, Ayadi L, Benzina Z, Charfedine I, Feki J, Ayadi H, Ghorbel A, Baklouti F, Masmoudi S. Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness. Mol Vis 2010; 16: 1898–1906

[10]

Ouyang XM, Xia XJ, Verpy E, Du LL, Pandya A, Petit C, Balkany T, Nance WE, Liu XZ. Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum Genet 2002; 111(1): 26–30

[11]

Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 2006; 79(6): 1040–1051

[12]

Nal N, Ahmed ZM, Erkal E, Alper OM, Lüleci G, Dinç O, Waryah AM, Ain Q, Tasneem S, Husnain T, Chattaraj P, Riazuddin S, Boger E, Ghosh M, Kabra M, Riazuddin S, Morell RJ, Friedman TB. Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing. Hum Mutat 2007; 28(10): 1014–1019

[13]

Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, Banin E, Sharon D. Exome sequencing identifies a founder frameshift mutation in an alternative exon of USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS ONE 2012; 7(12): e51566

[14]

Martin JF, Miano JM, Hustad CM, Copeland NG, Jenkins NA, Olson ENA. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol Cell Biol 1994; 14(3): 1647–1656

[15]

Sebastian S, Faralli H, Yao Z, Rakopoulos P, Palii C, Cao Y, Singh K, Liu QC, Chu A, Aziz A, Brand M, Tapscott SJ, Dilworth FJ. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev 2013; 27(11): 1247–1259

[16]

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456(7221): 470–476

[17]

Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40(12): 1413–1415

[18]

Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 2004; 428(6986): 950–955

[19]

Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449(7158): 87–91

[20]

Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 2001; 68(1): 26–37

[21]

Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 2001; 27(1): 103–107

[22]

Bolz H, von Brederlow B, Ramírez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, del C-Salcedó Cabrera M, Vila MC, Molina OP, Gal A, Kubisch C. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 2001; 27(1): 108–112

[23]

Di Palma F, Pellegrino R, Noben-Trauth K. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 2001; 281(1-2): 31–41

[24]

Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Müller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci USA 2002; 99(23): 14946–14951

[25]

Xu Z, Peng AW, Oshima K, Heller S. MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J Neurosci 2008; 28(44): 11269–11276

[26]

Yonezawa S, Hanai A, Mutoh N, Moriyama A, Kageyama T. Redox-dependent structural ambivalence of the cytoplasmic domain in the inner ear-specific cadherin 23 isoform. Biochem Biophys Res Commun 2008; 366(1): 92–97

[27]

Xu Z, Oshima K, Heller S. PIST regulates the intracellular trafficking and plasma membrane expression of cadherin 23. BMC Cell Biol 2010; 11(1): 80

[28]

Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37(8): 844–852

[29]

Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33(5): 591–601

[30]

Warzecha CC, Shen S, Xing Y, Carstens RP. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events. RNA Biol 2009; 6(5): 546–562

[31]

Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S, Guo W, Xing Y, Carstens RP. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010; 29(19): 3286–3300

[32]

Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47(4): 360–378

[33]

Romanelli MG, Diani E, Lievens PM. New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14(11): 22906–22932

[34]

Miranda-Rottmann S, Kozlov AS, Hudspeth AJ. Highly specific alternative splicing of transcripts encoding BK channels in the chicken’s cochlea is a minor determinant of the tonotopic gradient. Mol Cell Biol 2010; 30(14): 3646–3660

[35]

Mann ZF, Kelley MW. Development of tonotopy in the auditory periphery. Hear Res 2011; 276(1-2): 2–15

[36]

Crawford AC, Fettiplace R. An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 1981; 312(1): 377–412

[37]

Art JJ, Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 1987; 385(1): 207–242

[38]

Fuchs PA, Nagai T, Evans MG. Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 1988; 8(7): 2460–2467

[39]

Navaratnam DS, Bell TJ, Tu TD, Cohen EL, Oberholtzer JC. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 1997; 19(5): 1077–1085

[40]

Rosenblatt KP, Sun ZP, Heller S, Hudspeth AJ. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 1997; 19(5): 1061–1075

[41]

Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. A molecular mechanism for electrical tuning of cochlear hair cells. Science 1999; 283(5399): 215–217

[42]

Jones EM, Gray-Keller M, Art JJ, Fettiplace R. The functional role of alternative splicing of Ca2+-activated K+ channels in auditory hair cells. Ann N Y Acad Sci 1999; 868(1): 379–385

[43]

Jones EM, Gray-Keller M, Fettiplace R. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 1999; 518(Pt 3): 653–665

[44]

Sakai Y, Harvey M, Sokolowski B. Identification and quantification of full-length BK channel variants in the developing mouse cochlea. J Neurosci Res 2011; 89(11): 1747–1760

[45]

Rüttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Müller M, Köpschall I, Pfister M, Münkner S, Rohbock K, Pfaff I, Rüsch A, Ruth P, Knipper M. Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 2004; 101(35): 12922–12927

[46]

Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999; 96(3): 437–446

[47]

Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999; 8(7): 1321–1328

[48]

Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 2006; 25(3): 642–652

[49]

Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F, Kachar B, Yamoah EN, Fritzsch B. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 2005; 25(40): 9285–9293

[50]

Scheffer DI, Shen J, Corey DP, Chen ZY. Gene expression by mouse inner ear hair cells during development. J Neurosci 2015; 35(16): 6366–6380

[51]

Shen J, Scheffer DI, Kwan KY, Corey DP. SHIELD: an integrative gene expression database for inner ear research. Database (Oxford) 2015, 2015:bav071

[52]

Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417(1): 15–27

[53]

Deol MS, Gluecksohn-Waelsch S. The role of inner hair cells in hearing. Nature 1979; 278(5701): 250–252

[54]

Deol MS. The inner ear in Bronx waltzer mice. Acta Otolaryngol 1981; 92(3-4): 331–336

[55]

Bock GR, Yates GK, Deol MS. Cochlear potentials in the Bronx waltzer mutant mouse. Neurosci Lett 1982; 34(1): 19–25

[56]

Horner KC, Lenoir M, Bock GR. Distortion product otoacoustic emissions in hearing-impaired mutant mice. J Acoust Soc Am 1985; 78(5): 1603–1611

[57]

Inagaki M, Kon K, Suzuki S, Kobayashi N, Kaga M, Nanba E. Characteristic findings of auditory brainstem response and otoacoustic emission in the Bronx waltzer mouse. Brain Dev 2006; 28(10): 617–624

[58]

Whitlon DS, Gabel C, Zhang X. Cochlear inner hair cells exist transiently in the fetal Bronx Waltzer (bv/bv) mouse. J Comp Neurol 1996; 364(3): 515–522

[59]

Sobkowicz HM, Inagaki M, August BK, Slapnick SM. Abortive synaptogenesis as a factor in the inner hair cell degeneration in the Bronx Waltzer (bv) mutant mouse. J Neurocytol 1999; 28(1): 17–38

[60]

Cheong MA, Steel KP. Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice. Hear Res 2002; 164(1-2): 179–189

[61]

Bussoli TJ, Kelly A, Steel KP. Localization of the bronx waltzer (bv) deafness gene to mouse chromosome 5. Mamm Genome 1997; 8(10): 714–717

[62]

Calarco JA, Superina S, O’Hanlon D, Gabut M, Raj B, Pan Q, Skalska U, Clarke L, Gelinas D, van der Kooy D, Zhen M, Ciruna B, Blencowe BJ. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 2009; 138(5): 898–910

[63]

Moayedi Y, Basch ML, Pacheco NL, Gao SS, Wang R, Harrison W, Xiao N, Oghalai JS, Overbeek PA, Mardon G, Groves AK. The candidate splicing factor Sfswap regulates growth and patterning of inner ear sensory organs. PLoS Genet 2014; 10(1): e1004055

[64]

Chou TB, Zachar Z, Bingham PM. Developmental expression of a regulatory gene is programmed at the level of splicing. EMBO J 1987; 6(13): 4095–4104

[65]

Zachar Z, Chou TB, Bingham PM. Evidence that a regulatory gene autoregulates splicing of its transcript. EMBO J 1987; 6(13): 4105–4111

[66]

Zachar Z, Chou TB, Kramer J, Mims IP, Bingham PM. Analysis of autoregulation at the level of pre-mRNA splicing of the suppressor-of-white-apricot gene in Drosophila. Genetics 1994; 137(1): 139–150

[67]

Denhez F, Lafyatis R. Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-white-apricot. J Biol Chem 1994; 269(23): 16170–16179

[68]

Sarkissian M, Winne A, Lafyatis R. The mammalian homolog of suppressor-of-white-apricot regulates alternative mRNA splicing of CD45 exon 4 and fibronectin IIICS. J Biol Chem 1996; 271(49): 31106–31114

[69]

Lemaire R, Winne A, Sarkissian M, Lafyatis R. SF2 and SRp55 regulation of CD45 exon 4 skipping during T cell activation. Eur J Immunol 1999; 29(3): 823–837

[70]

Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabé de Angelis M. The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 2001; 98(7): 3873–3878

[71]

Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SD, Steel KP. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 2001; 10(5): 507–512

[72]

Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7): 1277–1286

[73]

Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006; 2(1): 27–38

[74]

Verduci L, Simili M, Rizzo M, Mercatanti A, Evangelista M, Mariani L, Rainaldi G, Pitto L. MicroRNA (miRNA)-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis. J Biol Chem 2010; 285(50): 39551–39563

[75]

Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, Zhu J. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell 2010; 38(1): 67–77

[76]

Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. MicroRNAs-10a and-10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2011; 286(6): 4150–4164

[77]

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): 435–448

[78]

Boutz PL, Chawla G, Stoilov P, Black DL. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007; 21(1): 71–84

[79]

Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain Res 2006; 1111(1): 95–104

[80]

Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, Biesemeier DJ, Shomron N, Fekete DM, Hornstein E, Avraham KB. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci USA 2009; 106(19): 7915–7920

[81]

Lewis MA, Steel KP. MicroRNAs in mouse development and disease. Semin Cell Dev Biol 2010; 21(7): 774–780

[82]

Ushakov K, Rudnicki A, Avraham KB. MicroRNAs in sensorineural diseases of the ear. Front Mol Neurosci 2013; 6: 52

[83]

Moulton VR, Gillooly AR, Tsokos GC. Ubiquitination regulates expression of the serine/arginine-rich splicing factor 1 (SRSF1) in normal and systemic lupus erythematosus (SLE) T cells. J Biol Chem 2014; 289(7): 4126–4134

[84]

Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT, Sette C, Jones KT, Elliott DJ. SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 2004; 13(14): 1525–1534

[85]

Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4: e07938<?Pub Caret?>

[86]

Henzl MT, O’Neal J, Killick R, Thalmann I, Thalmann R. OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hear Res 2001; 157(1-2): 100–111

[87]

Nelson RF, Glenn KA, Zhang Y, Wen H, Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJ, Paulson HL. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 2007; 27(19): 5163–5171

[88]

Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, Sakuma R, Luga V, Roncari L, Attisano L, Wrana JL. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009; 137(2): 295–307

[89]

Van Campenhout CA, Eitelhuber A, Gloeckner CJ, Giallonardo P, Gegg M, Oller H, Grant SG, Krappmann D, Ueffing M, Lickert H. Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases. Dev Cell 2011; 21(3): 479–491

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (210KB)

2881

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/