Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation
Nan Ding, Jiafei Xi, Yanming Li, Xiaoyan Xie, Jian Shi, Zhaojun Zhang, Yanhua Li, Fang Fang, Sihan Wang, Wen Yue, Xuetao Pei, Xiangdong Fang
Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation
Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present study, we compared the dynamics of coding genes, miRNA, and lncRNA expression profiles. To explore dynamic changes in erythropoiesis and potential mechanisms that control these changes in the transcriptome level, we took advantage of high throughput sequencing technologies to obtain transcriptome data from cord blood hematopoietic stem cells and the following four erythroid differentiation stages, as well as from mature red blood cells. Results indicated that lncRNAs were promising cell marker candidates for erythroid differentiation. Clustering analysis classified the differentially expressed genes into four subtypes that corresponded to dynamic changes during stemness maintenance, mid-differentiation, and maturation. Integrated analysis revealed that noncoding RNAs potentially participated in controlling blood cell maturation, and especially associated with heme metabolism and responses to oxygen species and DNA damage. These regulatory interactions were displayed in a comprehensive network, thereby inferring correlations between RNAs and their associated functions. These data provided a substantial resource for the study of normal erythropoiesis, which will permit further investigation and understanding of erythroid development and acquired erythroid disorders.
erythroid differentiation / hematopoietic stem cell / RNA-seq / miRNA / lncRNA
[1] |
Palis J. Ontogeny of erythropoiesis. Curr Opin Hematol 2008; 15(3): 155–161
CrossRef
Pubmed
Google scholar
|
[2] |
McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol 2008; 82: 1–22
CrossRef
Pubmed
Google scholar
|
[3] |
Loose M, Patient R. Global genetic regulatory networks controlling hematopoietic cell fates. Curr Opin Hematol 2006; 13(4): 229–236
CrossRef
Pubmed
Google scholar
|
[4] |
Peller S, Tabach Y, Rotschild M, Garach-Joshua O, Cohen Y, Goldfinger N, Rotter V. Identification of gene networks associated with erythroid differentiation. Blood Cells Mol Dis 2009; 43(1): 74–80
CrossRef
Pubmed
Google scholar
|
[5] |
An X, Schulz VP, Li J, Wu K, Liu J, Xue F, Hu J, Mohandas N, Gallagher PG. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 2014; 123(22): 3466–3477
CrossRef
Pubmed
Google scholar
|
[6] |
Beck D, Thoms JA, Perera D, Schütte J, Unnikrishnan A, Knezevic K, Kinston SJ, Wilson NK, O’Brien TA, Göttgens B, Wong JW, Pimanda JE. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes. Blood 2013; 122(14): e12–e22
CrossRef
Pubmed
Google scholar
|
[7] |
Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS, Gromatzky AA, van Oudenaarden A, Lodish HF. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 2014; 123(4): 570–581
CrossRef
Pubmed
Google scholar
|
[8] |
Paralkar VR, Mishra T, Luan J, Yao Y, Kossenkov AV, Anderson SM, Dunagin M, Pimkin M, Gore M, Sun D, Konuthula N, Raj A, An X, Mohandas N, Bodine DM, Hardison RC, Weiss MJ. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 2014; 123(12): 1927–1937
CrossRef
Pubmed
Google scholar
|
[9] |
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics 2012; 4(1): 51–65
CrossRef
Pubmed
Google scholar
|
[10] |
Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104(8): 2750–2755
CrossRef
Pubmed
Google scholar
|
[11] |
Yang GH, Wang F, Yu J, Wang XS, Yuan JY, Zhang JW. MicroRNAs are involved in erythroid differentiation control. J Cell Biochem 2009; 107(3): 548–556
CrossRef
Pubmed
Google scholar
|
[12] |
Wang LS, Li L, Li L, Chu S, Shiang KD, Li M, Sun HY, Xu J, Xiao FJ, Sun G, Rossi JJ, Ho Y, Bhatia R. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 2015; 125(8): 1302–1313
CrossRef
Pubmed
Google scholar
|
[13] |
Zhang L, Flygare J, Wong P, Lim B, Lodish HF. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 2011; 25(2): 119–124
CrossRef
Pubmed
Google scholar
|
[14] |
Patrick DM, Zhang CC, Tao Y, Yao H, Qi X, Schwartz RJ, Jun-Shen Huang L, Olson EN. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev 2010; 24(15): 1614–1619
CrossRef
Pubmed
Google scholar
|
[15] |
Yu D, dos Santos CO, Zhao G, Jiang J, Amigo JD, Khandros E, Dore LC, Yao Y, D’Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange JS, Paw BH, Weiss MJ. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev 2010; 24(15): 1620–1633
CrossRef
Pubmed
Google scholar
|
[16] |
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23(13): 1494–1504
CrossRef
Pubmed
Google scholar
|
[17] |
Alvarez-Dominguez JR, Hu W, Gromatzky AA, Lodish HF. Long noncoding RNAs during normal and malignant hematopoiesis. Int J Hematol 2014; 99(5): 531–541
CrossRef
Pubmed
Google scholar
|
[18] |
Satpathy AT, Chang HY. Long noncoding RNA in hematopoiesis and immunity. Immunity 2015; 42(5): 792–804
CrossRef
Pubmed
Google scholar
|
[19] |
Gallagher PG. Long noncoding RNAs in erythropoiesis. Blood 2014; 123(4): 465–466
CrossRef
Pubmed
Google scholar
|
[20] |
Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun 2007; 364(3): 509–514
CrossRef
Pubmed
Google scholar
|
[21] |
Leberbauer C, Boulmé F, Unfried G, Huber J, Beug H, Müllner EW. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 2005; 105(1): 85–94
CrossRef
Pubmed
Google scholar
|
[22] |
Xi J, Li Y, Wang R, Wang Y, Nan X, He L, Zhang P, Chen L, Yue W, Pei X. In vitro large scale production of human mature red blood cells from hematopoietic stem cells by coculturing with human fetal liver stromal cells. Biomed Res Int 2013; 2013: 807863
CrossRef
Pubmed
Google scholar
|
[23] |
Brown JM, Leach J, Reittie JE, Atzberger A, Lee-Prudhoe J, Wood WG, Higgs DR, Iborra FJ, Buckle VJ. Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 2006; 172(2): 177–187
CrossRef
Pubmed
Google scholar
|
[24] |
Merryweather-Clarke AT, Atzberger A, Soneji S, Gray N, Clark K, Waugh C, McGowan SJ, Taylor S, Nandi AK, Wood WG, Roberts DJ, Higgs DR, Buckle VJ, Robson KJ. Global gene expression analysis of human erythroid progenitors. Blood 2011; 117(13): e96–e108
CrossRef
Pubmed
Google scholar
|
[25] |
FASTQC: a quality control tool for high throughput sequence data
|
[26] |
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14(4): R36
CrossRef
Pubmed
Google scholar
|
[27] |
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25(9): 1105–1111
CrossRef
Pubmed
Google scholar
|
[28] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7(3): 562–578
CrossRef
Pubmed
Google scholar
|
[29] |
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28(5): 511–515
CrossRef
Pubmed
Google scholar
|
[30] |
Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572–1573
CrossRef
Pubmed
Google scholar
|
[31] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550
CrossRef
Pubmed
Google scholar
|
[32] |
Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 2010; 26(22): 2927–2928
CrossRef
Pubmed
Google scholar
|
[33] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498–2504
CrossRef
Pubmed
Google scholar
|
[34] |
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R, Hubbard TJ. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22(9): 1760–1774
CrossRef
Pubmed
Google scholar
|
[35] |
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res 2014; 42(Database issue): D222–D230
CrossRef
Pubmed
Google scholar
|
[36] |
Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16(6): 276–277
CrossRef
Pubmed
Google scholar
|
[37] |
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389–3402
CrossRef
Pubmed
Google scholar
|
[38] |
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012; 40(1): 37–52
CrossRef
Pubmed
Google scholar
|
[39] |
Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE 2012; 7(8): e42390
CrossRef
Pubmed
Google scholar
|
[40] |
Orkin SH. Transcription factors and hematopoietic development. J Biol Chem 1995; 270(10): 4955–4958
CrossRef
Pubmed
Google scholar
|
[41] |
Singh MK, Li Y, Li S, Cobb RM, Zhou D, Lu MM, Epstein JA, Morrisey EE, Gruber PJ. Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem 2010; 285(3): 1765–1772
CrossRef
Pubmed
Google scholar
|
[42] |
Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol 2012; 82(1): 1–17
CrossRef
Pubmed
Google scholar
|
[43] |
Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 2010; 31(9): 1501–1508
CrossRef
Pubmed
Google scholar
|
[44] |
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15(1): 7–21
CrossRef
Pubmed
Google scholar
|
[45] |
Song X, Cao G, Jing L, Lin S, Wang X, Zhang J, Wang M, Liu W, Lv C. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med 2014; 18(6): 991–1003
CrossRef
Pubmed
Google scholar
|
[46] |
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358–369
CrossRef
Pubmed
Google scholar
|
[47] |
Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci USA 2006; 103(15): 5781–5786
CrossRef
Pubmed
Google scholar
|
[48] |
Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E. Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol 2013; 20(1): 119–126
CrossRef
Pubmed
Google scholar
|
[49] |
Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J, Orringer D, Trikha P, Saavedra HI, Leone G. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 2007; 27(1): 65–78
CrossRef
Pubmed
Google scholar
|
[50] |
dos Santos CO, Duarte AS, Saad ST, Costa FF. Expression of α-hemoglobin stabilizing protein gene during human erythropoiesis. Exp Hematol 2004; 32(2): 157–162
CrossRef
Pubmed
Google scholar
|
[51] |
Zhai PF, Wang F, Su R, Lin HS, Jiang CL, Yang GH, Yu J, Zhang JW. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor a (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem 2014; 289(33): 22600–22613
CrossRef
Pubmed
Google scholar
|
[52] |
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res 2013; 41(7): 4129–4143
CrossRef
Pubmed
Google scholar
|
[53] |
Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, Song W, He A, Wang Q, Wang L, Zhang J, Li J, Yu J. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res 2014; 42(1): 442–457
CrossRef
Pubmed
Google scholar
|
[54] |
Grabher C, Payne EM, Johnston AB, Bolli N, Lechman E, Dick JE, Kanki JP, Look AT. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 2011; 25(3): 506–514
CrossRef
Pubmed
Google scholar
|
[55] |
Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating microRNAs in inflammatory bowel diseases. J Crohns Colitis 2012; 6(9):900–904
CrossRef
Pubmed
Google scholar
|
[56] |
Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, Werner J, Hackert T, Ruprecht K, Huwer H, Huebers J, Jacobs G, Rosenstiel P, Dommisch H, Schaefer A, Müller-Quernheim J, Wullich B, Keck B, Graf N, Reichrath J, Vogel B, Nebel A, Jager SU, Staehler P, Amarantos I, Boisguerin V, Staehler C, Beier M, Scheffler M, Büchler MW, Wischhusen J, Haeusler SF, Dietl J, Hofmann S, Lenhof HP, Schreiber S, Katus HA, Rottbauer W, Meder B, Hoheisel JD, Franke A, Meese E. Toward the blood-borne miRNome of human diseases. Nat Methods 2011; 8(10): 841–843
CrossRef
Pubmed
Google scholar
|
[57] |
Rudnicki M, Perco P, D Haene B, Leierer J, Heinzel A, Mühlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A, Mestdagh P, Vandesompele J, Mayer B, Mayer G. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest 2016; 46(3): 213–226
CrossRef
Pubmed
Google scholar
|
[58] |
Wang JX, Zhang XJ, Feng C, Sun T, Wang K, Wang Y, Zhou LY, Li PF. MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis2015; 6:e1677
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |