Curbing the burden of lung cancer

Alexandra Urman, H. Dean Hosgood

PDF(103 KB)
PDF(103 KB)
Front. Med. ›› 2016, Vol. 10 ›› Issue (2) : 228-232. DOI: 10.1007/s11684-016-0447-x
COMMENTARY
COMMENTARY

Curbing the burden of lung cancer

Author information +
History +

Abstract

Lung cancer contributes substantially to the global burden of disease and healthcare costs. New screening modalities using low-dose computerized tomography are promising tools for early detection leading to curative surgery. However, the screening and follow-up diagnostic procedures of these techniques may be costly. Focusing on prevention is an important factor to reduce the burden of screening, treatment, and lung cancer deaths. The International Agency for Research on Cancer has identified several lung carcinogens, which we believe can be considered actionable when developing prevention strategies. To curb the societal burden of lung cancer, healthcare resources need to be focused on early detection and screening and on mitigating exposure(s) of a person to known lung carcinogens, such as active tobacco smoking, household air pollution (HAP), and outdoor air pollution. Evidence has also suggested that these known lung carcinogens may be associated with genetic predispositions, supporting the hypothesis that lung cancers attributed to differing exposures may have developed from unique underlying genetic mechanisms attributed to the exposure of interest. For instance, smoking-attributed lung cancer involves novel genetic markers of risk compared with HAP-attributed lung cancer. Therefore, genetic risk markers may be used in risk stratification to identify subpopulations that are at a higher risk for developing lung cancer attributed to a given exposure. Such targeted prevention strategies suggest that precision prevention strategies may be possible in the future; however, much work is needed to determine whether these strategies will be viable.

Keywords

lung cancer / screening / risk factors / environmental

Cite this article

Download citation ▾
Alexandra Urman, H. Dean Hosgood. Curbing the burden of lung cancer. Front. Med., 2016, 10(2): 228‒232 https://doi.org/10.1007/s11684-016-0447-x

References

[1]
Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest 2003; 123(1 Suppl): 21S–49S
CrossRef Pubmed Google scholar
[2]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16–27
CrossRef Pubmed Google scholar
[3]
Cipriano LE, Romanus D, Earle CC, Neville BA, Halpern EF, Gazelle GS, McMahon PM. Lung cancer treatment costs, including patient responsibility, by disease stage and treatment modality, 1992 to 2003. Value Health 2011;14(1):41–52
CrossRef Google scholar
[4]
Kutikova L, Bowman L, Chang S, Long SR, Obasaju C, Crown WH. The economic burden of lung cancer and the associated costs of treatment failure in the United States. Lung Cancer 2005; 50(2): 143–154
CrossRef Pubmed Google scholar
[5]
Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER 9 Regs Research Data, Nov 2014 Sub (1973–2012)<Katrina/Rita Population Adjustment>—Linked To County Attributes—Total U.S., 1969–2013 Counties. National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch. 2015
[6]
National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365(5): 395–409
CrossRef Pubmed Google scholar
[7]
Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, Clingan KL, Duan F, Fagerstrom RM, Gareen IF, Gatsonis CA, Gierada DS, Jain A, Jones GC, Mahon I, Marcus PM, Rathmell JM, Sicks J; National Lung Screening Trial Research Team. Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med 2013; 369(10): 920–931
CrossRef Pubmed Google scholar
[8]
Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, Naeim A, Church TR, Silvestri GA, Gorelick J, Gatsonis C; National Lung Screening Trial Research Team. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med 2014; 371(19): 1793–1802
CrossRef Pubmed Google scholar
[9]
Boiselle PM, White CS, Ravenel JG. Computed tomographic screening for lung cancer: current practice patterns at leading academic medical centers. JAMA Intern Med 2014;174(2):286– 287
CrossRef Google scholar
[10]
Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers—a different disease. Nat Rev Cancer 2007; 7(10): 778–790
CrossRef Pubmed Google scholar
[11]
Lee PN, Forey BA, Coombs KJ. Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer 2012; 12(1): 385
CrossRef Pubmed Google scholar
[12]
Taylor R, Najafi F, Dobson A. Meta-analysis of studies of passive smoking and lung cancer: effects of study type and continent. Int J Epidemiol 2007; 36(5): 1048–1059
CrossRef Pubmed Google scholar
[13]
Samet JM. Environmental causes of lung cancer: what do we know in 2003? Chest 2004; 125(5 Suppl): 80S–83S
CrossRef Pubmed Google scholar
[14]
Boffetta P. Epidemiology of environmental and occupational cancer. Oncogene 2004; 23(38): 6392–6403
CrossRef Pubmed Google scholar
[15]
Tomatis L. Identification of carcinogenic agents and primary prevention of cancer. Ann N Y Acad Sci 2006; 1076(1): 1–14
CrossRef Pubmed Google scholar
[16]
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD 3rd, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA 3rd, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M, AlMazroa MA, Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2224–2260
CrossRef Pubmed Google scholar
[17]
Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, Dherani M, Hosgood HD, Mehta S, Pope D, Rehfuess E; HAP CRA Risk Expert Group. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu Rev Public Health 2014; 35(1): 185–206
CrossRef Pubmed Google scholar
[18]
Ezzati M, Lopez A, Rodgers A, Murray C. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. Vol 2. Geneva: World Health Organization, 2004
[19]
Rogalsky DK, Mendola P, Metts TA, Martin WJ 2nd. Estimating the number of low-income americans exposed to household air pollution from burning solid fuels. Environ Health Perspect 2014; 122(8): 806–810
Pubmed
[20]
Zhang J, Smith KR. Indoor air pollution: a global health concern. Br Med Bull 2003; 68(1): 209–225
CrossRef Pubmed Google scholar
[21]
Hosgood HD 3rd, Wei H, Sapkota A, Choudhury I, Bruce N, Smith KR, Rothman N, Lan Q. Household coal use and lung cancer: systematic review and meta-analysis of case-control studies, with an emphasis on geographic variation. Int J Epidemiol 2011; 40(3): 719–728
CrossRef Pubmed Google scholar
[22]
Hosgood HD 3rd, Boffetta P, Greenland S, Lee YCA, McLaughlin J, Seow A, Duell EJ, Andrew AS, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabiánová E, Mates D, Bencko V, Foretova L, Janout V, Morgenstern H, Rothman N, Hung RJ, Brennan P, Lan Q. In-home coal and wood use and lung cancer risk: a pooled analysis of the International Lung Cancer Consortium. Environ Health Perspect 2010; 118(12): 1743–1747
CrossRef Pubmed Google scholar
[23]
Lan Q, Chapman RS, Schreinemachers DM, Tian L, He X. Household stove improvement and risk of lung cancer in Xuanwei, China. J Natl Cancer Inst 2002; 94(11): 826–835
CrossRef Pubmed Google scholar
[24]
Hosgood HD 3rd, Chapman R, Shen M, Blair A, Chen E, Zheng T, Lee KM, He X, Lan Q. Portable stove use is associated with lower lung cancer mortality risk in lifetime smoky coal users. Br J Cancer 2008; 99(11): 1934–1939
CrossRef Pubmed Google scholar
[25]
Pillarisetti A, Vaswani M, Jack D, Balakrishnan K, Bates MN, Arora NK, Smith KR. Patterns of stove usage after introduction of an advanced cookstove: the long-term application of household sensors. Environ Sci Technol 2014; 48(24): 14525–14533
CrossRef Pubmed Google scholar
[26]
Rhodes EL, Dreibelbis R, Klasen EM, Naithani N, Baliddawa J, Menya D, Khatry S, Levy S, Tielsch JM, Miranda JJ, Kennedy C, Checkley W. Behavioral attitudes and preferences in cooking practices with traditional open-fire stoves in Peru, Nepal, and Kenya: implications for improved cookstove interventions. Int J Environ Res Public Health 2014; 11(10): 10310–10326
CrossRef Pubmed Google scholar
[27]
Rosa G, Majorin F, Boisson S, Barstow C, Johnson M, Kirby M, Ngabo F, Thomas E, Clasen T. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda. PLoS ONE 2014; 9(3): e91011
CrossRef Pubmed Google scholar
[28]
Hartinger SM, Commodore AA, Hattendorf J, Lanata CF, Gil AI, Verastegui H, Aguilar-Villalobos M, Mäusezahl D, Naeher LP. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru. Indoor Air 2013; 23(4): 342–352
CrossRef Pubmed Google scholar
[29]
Ward TJ, Palmer CP, Noonan CW. Fine particulate matter source apportionment following a large woodstove changeout program in Libby, Montana. J Air Waste Manag Assoc 2010;60(6):688–693
[30]
Noonan CW, Ward TJ, Navidi W, Sheppard L. A rural community intervention targeting biomass combustion sources: effects on air quality and reporting of children’s respiratory outcomes. Occup Environ Med 2012; 69(5): 354–360
CrossRef Pubmed Google scholar
[31]
Matakidou A, Eisen T, Houlston RS. Systematic review of the relationship between family history and lung cancer risk. Br J Cancer 2005; 93(7): 825–833
CrossRef Pubmed Google scholar
[32]
Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40(5): 616–622
CrossRef Pubmed Google scholar
[33]
Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, Clavel-Chapelon F, Vineis P, Bueno-de-Mesquita HB, Lund E, Martinez C, Bingham S, Rasmuson T, Hainaut P, Riboli E, Ahrens W, Benhamou S, Lagiou P, Trichopoulos D, Holcátová I, Merletti F, Kjaerheim K, Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R, Conway DI, Znaor A, Healy C, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452(7187): 633–637
CrossRef Pubmed Google scholar
[34]
Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsäter A, Flex A, Aben KK, de Vegt F, Mulders PF, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452(7187): 638–642
CrossRef Pubmed Google scholar
[35]
Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV, Spitz MR, Eisen T, Amos CI, Houlston RS. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008; 40(12): 1407–1409
CrossRef Pubmed Google scholar
[36]
Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD 3rd, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VH, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe AD, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen R, Wu J, Lim WY, Chen KC, Chow WH, Ji BT, Chan JK, Chu M, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu T, Wu YL, Yang PC, Zhou B, Shin MH, Fraumeni JF Jr, Lin D, Chanock SJ, Rothman N. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 2012; 44(12): 1330–1335
CrossRef Pubmed Google scholar
[37]
Hosgood HD 3rd, Song M, Hsiung CA, Yin Z, Shu XO, Wang Z, Chatterjee N, Zheng W, Caporaso N, Burdette L, Yeager M, Berndt SI, Landi MT, Chen CJ, Chang GC, Hsiao CF, Tsai YH, Chien LH, Chen KY, Huang MS, Su WC, Chen YM, Chen CH, Yang TY, Wang CL, Hung JY, Lin CC, Perng RP, Chen CY, Chen KC, Li YJ, Yu CJ, Chen YS, Chen YH, Tsai FY, Kim C, Seow WJ, Bassig BA, Wu W, Guan P, He Q, Gao YT, Cai Q, Chow WH, Xiang YB, Lin D, Wu C, Wu YL, Shin MH, Hong YC, Matsuo K, Chen K, Wong MP, Lu D, Jin L, Wang JC, Seow A, Wu T, Shen H, Fraumeni JF Jr, Yang PC, Chang IS, Zhou B, Chanock SJ, Rothman N, Lan Q. Interactions between household air pollution and GWAS-identified lung cancer susceptibility markers in the Female Lung Cancer Consortium in Asia (FLCCA). Hum Genet 2015; 134(3): 333–341
CrossRef Pubmed Google scholar
[38]
Villanti AC, Jiang Y, Abrams DB, Pyenson BS. A cost-utility analysis of lung cancer screening and the additional benefits of incorporating smoking cessation interventions. PLoS ONE 2013; 8(8): e71379
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Alexandra Urman and H. Dean Hosgood declare no conflicts of interest. This article does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(103 KB)

Accesses

Citations

Detail

Sections
Recommended

/