CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes
Jiangnan Liu, Bin Yi, Zhe Zhang, Yi Cao
CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes
CD176 (Thomsen-Friedenreich antigen) is a tumor-associated carbohydrate epitope (glycotope) functionally involved in blood spread and liver metastasis of cancer cells by mediating the adhesion of cancer cells to endothelial cells and hepatocytes, respectively. CD176 could be a promising target for antitumor immunotherapy. We applied B lymphocytes obtained from mice immunized with CD176 antigen and constructed a phage display library. A positive clone of CD176 single-chain variable antibody fragment (scFv) was successfully screened from this library. The CD176 scFv was expressed in Escherichia coli and purified. The purified scFv can bind to the natural CD176 expressed on the surface of cancer cells. Furthermore, the CD176 scFv inhibits the adhesion of CD176+ cancer cells to endothelial cells and hepatocytes. This CD176 scFv provides a basis for future development of recombinant CD176-specific antibodies that can be used in therapeutic application.
CD176 / Thomsen-Friedenreich antigen / scFv / cancer / therapy / adhesion / metastasis
[1] |
Little M, Kipriyanov SM, Le Gall F, Moldenhauer G. Of mice and men: hybridoma and recombinant antibodies. Immunol Today 2000; 21(8): 364–370
CrossRef
Pubmed
Google scholar
|
[2] |
Dübel S. Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 2007; 74(4): 723–729
CrossRef
Pubmed
Google scholar
|
[3] |
Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U. Thomsen-Friedenreich antigen: the “hidden” tumor antigen. Adv Exp Med Biol 2003; 535: 147–162
CrossRef
Pubmed
Google scholar
|
[4] |
Cao Y, Merling A, Karsten U, Schwartz-Albiez R. Expression of Thomsen-Friedenreich-related carbohydrate antigens on human leukemia cells. In: Mason D et al. Leucocyte Typing VII. Oxford: Oxford University Press, 2002; 204–205
|
[5] |
Cao Y, Stosiek P, Springer GF, Karsten U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 1996; 106(2): 197–207
CrossRef
Pubmed
Google scholar
|
[6] |
Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol 2011; 92(2): 97–105
CrossRef
Pubmed
Google scholar
|
[7] |
Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL, Quinn TP. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61(12): 4851–4857
Pubmed
|
[8] |
Cao Y, Karsten UR, Liebrich W, Haensch W, Springer GF, Schlag PM. Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation. Cancer 1995; 76(10): 1700–1708
CrossRef
Pubmed
Google scholar
|
[9] |
Cao Y, Merling A, Karsten U, Goletz S, Punzel M, Kraft R, Butschak G, Schwartz-Albiez R. Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int J Cancer 2008; 123(1): 89–99
CrossRef
Pubmed
Google scholar
|
[10] |
Yi B, Zhang M, Schwartz-Albiez R, Cao Y. Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol 2011; 38(6): 1565–1573
Pubmed
|
[11] |
Yi B, Zhang Z, Zhang M, Schwartz-Albiez R, Cao Y. CD176 antiserum treatment leads to a therapeutic response in a murine model of leukemia. Oncol Rep 2013; 30(4): 1841–1847
Pubmed
|
[12] |
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228(4705): 1315–1317
CrossRef
Pubmed
Google scholar
|
[13] |
Chan CE, Lim AP, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26(12): 649–657
CrossRef
Pubmed
Google scholar
|
[14] |
McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301): 552–554
CrossRef
Pubmed
Google scholar
|
[15] |
Larsen SA, Meldgaard T, Lykkemark S, Mandrup OA, Kristensen P. Selection of cell-type specific antibodies on tissue-sections using phage display. J Cell Mol Med 2015; 19(8): 1939–1948
CrossRef
Pubmed
Google scholar
|
[16] |
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126–1136
CrossRef
Pubmed
Google scholar
|
[17] |
Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9): 1105–1116
CrossRef
Pubmed
Google scholar
|
[18] |
Karsten U, Butschak G, Cao Y, Goletz S, Hanisch FG. A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma 1995; 14(1): 37–44
CrossRef
Pubmed
Google scholar
|
[19] |
Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998; 273(34): 21769–21776
CrossRef
Pubmed
Google scholar
|
[20] |
Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 2010; 651: 177–209
CrossRef
Pubmed
Google scholar
|
[21] |
Yuasa N, Zhang W, Goto T, Sakaue H, Matsumoto-Takasaki A, Kimura M, Ohshima H, Tsuchida Y, Koizumi T, Sakai K, Kojima T, Yamamoto K, Nakata M, Fujita-Yamaguchi Y. Production of anti-carbohydrate antibodies by phage display technologies: potential impairment of cell growth as a result of endogenous expression. J Biol Chem 2010; 285(40): 30587–30597
CrossRef
Pubmed
Google scholar
|
[22] |
Arjmand R, Fard SS, Saberi S, Tolouei S, Khamesipour A, Hejazi SH. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Adv Biomed Res 2015; 4(1): 128
CrossRef
Pubmed
Google scholar
|
[23] |
Madorsky Rowdo FP, Baron A, Urrutia M, Mordoh J. Immunotherapy in cancer: a combat between tumors and the immune system; you win some, you lose some. Front Immunol 2015; 6: 127
CrossRef
Pubmed
Google scholar
|
[24] |
Fleuren ED, Versleijen-Jonkers YM, Heskamp S, van Herpen CM, Oyen WJ, van der Graaf WT, Boerman OC. Theranostic applications of antibodies in oncology. Mol Oncol 2014; 8(4): 799–812
CrossRef
Pubmed
Google scholar
|
[25] |
Rabu C, McIntosh R, Jurasova Z, Durrant L. Glycans as targets for therapeutic antitumor antibodies. Future Oncol 2012; 8(8): 943–960
CrossRef
Pubmed
Google scholar
|
[26] |
Fujita-Yamaguchi Y. Production of single-chain variable-fragments against carbohydrate antigens. Antibodies (Basel) 2014; 3(1): 155–168
CrossRef
Google scholar
|
[27] |
Ravn P, Stahn R, Danielczyk A, Faulstich D, Karsten U, Goletz S. The Thomsen-Friedenreich disaccharide as antigen for in vivo tumor targeting with multivalent scFvs. Cancer Immunol Immunother 2007; 56(9): 1345–1357
CrossRef
Pubmed
Google scholar
|
[28] |
Yuasa N, Koyama T, Fujita-Yamaguchi Y. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies. Biosci Trends 2014; 8(1): 24–31
CrossRef
Pubmed
Google scholar
|
[29] |
Cao Y, Schlag PM, Karsten U. Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: apolar localization corresponds to malignant transformation. Virchows Arch 1997; 431(3): 159–166
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |