Emerging roles of podoplanin in vascular development and homeostasis

Yanfang Pan, Lijun Xia

PDF(1278 KB)
PDF(1278 KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (4) : 421-430. DOI: 10.1007/s11684-015-0424-9
REVIEW
REVIEW

Emerging roles of podoplanin in vascular development and homeostasis

Author information +
History +

Abstract

Podoplanin (PDPN) is a mucin-type O-glycoprotein expressed in diverse cell types, such as lymphatic endothelial cells (LECs) in the vascular system and fibroblastic reticular cells (FRCs) in lymph nodes. PDPN on LECs or FRCs activates CLEC-2 in platelets, triggering platelet activation and/or aggregation through downstream signaling events, including activation of Syk kinase. This mechanism is required to initiate and maintain separation of blood and lymphatic vessels and to stabilize high endothelial venule integrity within lymph nodes. In the vascular system, normal expression of PDPN at the LEC surface requires transcriptional activation of Pdpn by Prox1 and modification of PDPN with core 1-derived O-glycans. This review provides a comprehensive overview of the roles of PDPN in vascular development and lymphoid organ maintenance and discusses the mechanisms that regulate PDPN expression related to its function.

Keywords

podoplanin / CLEC-2 / Prox1 / O-glycosylation / lymphatic vascular development and maintenance / lymphoid organ homeostasis

Cite this article

Download citation ▾
Yanfang Pan, Lijun Xia. Emerging roles of podoplanin in vascular development and homeostasis. Front. Med., 2015, 9(4): 421‒430 https://doi.org/10.1007/s11684-015-0424-9

References

[1]
Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S, Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 2006; 119(Pt 21): 4541–4553
CrossRef Pubmed Google scholar
[2]
Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G, Kerjaschki D. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 1997; 151(4): 1141–1152
Pubmed
[3]
Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1α, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003; 256(1): 61–72
CrossRef Pubmed Google scholar
[4]
Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M. T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22(14): 3546–3556
CrossRef Pubmed Google scholar
[5]
Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314(5797): 304–308
CrossRef Pubmed Google scholar
[6]
Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282(36): 25993–26001
CrossRef Pubmed Google scholar
[7]
Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, Stewart EA, Eisemann J, Steinkasserer A, Suzuki-Inoue K, Fuller GL, Pearce AC, Watson SP, Hoxie JA, Baribaud F, Pöhlmann S. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80(18): 8951–8960
CrossRef Pubmed Google scholar
[8]
Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, Grant D, Solloway M, Parker L, Ye W, Forrest W, Ghilardi N, Oravecz T, Platt KA, Rice DS, Hansen GM, Abuin A, Eberhart DE, Godowski P, Holt KH, Peterson A, Zambrowicz BP, de Sauvage FJ. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 2010; 28(7): 749–755
CrossRef Pubmed Google scholar
[9]
Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pöhlmann S, Suzuki-Inoue K, Ozaki Y, Watson SP, Pearce AC. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282(17): 12397–12409
CrossRef Pubmed Google scholar
[10]
Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, Xu B, Lu MM, Zhou D, Sebzda E, Santore MT, Merianos DJ, Stadtfeld M, Flake AW, Graf T, Skoda R, Maltzman JS, Koretzky GA, Kahn ML. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116(4): 661–670
CrossRef Pubmed Google scholar
[11]
Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, McGee S, May F, Nieswandt B, Morris AJ, Lupu F, Coughlin SR, McEver RP, Chen H, Kahn ML, Xia L. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013; 502(7469): 105–109
CrossRef Pubmed Google scholar
[12]
Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438(7070): 946–953
CrossRef Pubmed Google scholar
[13]
Oliver G, Srinivasan RS. Lymphatic vasculature development: current concepts. Ann N Y Acad Sci 2008; 1131(1): 75–81
CrossRef Pubmed Google scholar
[14]
Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 2009; 21(2): 154–165
CrossRef Pubmed Google scholar
[15]
Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007; 21(19): 2422–2432
CrossRef Pubmed Google scholar
[16]
Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225(3): 351–357
CrossRef Pubmed Google scholar
[17]
Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 2008; 22(23): 3282–3291
CrossRef Pubmed Google scholar
[18]
Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98(6): 769–778
CrossRef Pubmed Google scholar
[19]
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002; 21(7): 1505–1513
CrossRef Pubmed Google scholar
[20]
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140(4): 460–476
CrossRef Pubmed Google scholar
[21]
Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ, Gruss P. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev 1993; 44(1): 3–16
CrossRef Pubmed Google scholar
[22]
Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 2004; 36(7): 683–685
CrossRef Pubmed Google scholar
[23]
Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, Ramu S, Lee J, Hong YK. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 2009; 113(8): 1856–1859
CrossRef Pubmed Google scholar
[24]
Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282(5390): 946–949
CrossRef Pubmed Google scholar
[25]
Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12(4): 390–397
CrossRef Pubmed Google scholar
[26]
Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 2003; 5(1): 45–57
CrossRef Pubmed Google scholar
[27]
Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997; 19(5): 995–1005
CrossRef Pubmed Google scholar
[28]
Petrova TV, Karpanen T, Norrmén C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Ylä-Herttuala S, Miura N, Alitalo K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10(9): 974–981
CrossRef Pubmed Google scholar
[29]
Norrmén C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M, Miura N, Puolakkainen P, Horsley V, Hu J, Augustin HG, Ylä-Herttuala S, Alitalo K, Petrova TV. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009; 185(3): 439–457
CrossRef Pubmed Google scholar
[30]
Navarro A, Perez RE, Rezaiekhaligh M, Mabry SM, Ekekezie II. T1α/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295(4): L543–L551
CrossRef Pubmed Google scholar
[31]
Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, Nye E, Ju T, Ramirez MI, Carmeliet P, Cummings RD, Lupu F, Xia L. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 2008; 118(11): 3725–3737
CrossRef Pubmed Google scholar
[32]
Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014; 94: 96–102
CrossRef Pubmed Google scholar
[33]
Durchdewald M, Guinea-Viniegra J, Haag D, Riehl A, Lichter P, Hahn M, Wagner EF, Angel P, Hess J. Podoplanin is a novel fos target gene in skin carcinogenesis. Cancer Res 2008; 68(17): 6877–6883
CrossRef Pubmed Google scholar
[34]
Kunita A, Kashima TG, Ohazama A, Grigoriadis AE, Fukayama M. Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol 2011; 179(2): 1041–1049
CrossRef Pubmed Google scholar
[35]
Peterziel H, Müller J, Danner A, Barbus S, Liu HK, Radlwimmer B, Pietsch T, Lichter P, Schütz G, Hess J, Angel P. Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-oncol 2012; 14(4): 426–439
CrossRef Pubmed Google scholar
[36]
An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med 2007; 204(6): 1417–1429
CrossRef Pubmed Google scholar
[37]
Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem 2002; 277(1): 178–186
CrossRef Pubmed Google scholar
[38]
Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 2004; 164(3): 451–459
CrossRef Pubmed Google scholar
[39]
Ju T, Cummings RD, Canfield WM. Purification, characterization, and subunit structure of rat core 1 β1,3-galactosyltransferase. J Biol Chem 2002; 277(1): 169–177
CrossRef Pubmed Google scholar
[40]
Kaneko M, Kato Y, Kunita A, Fujita N, Tsuruo T, Osawa M. Functional sialylated O-glycan to platelet aggregation on Aggrus (T1α/Podoplanin) molecules expressed in Chinese hamster ovary cells. J Biol Chem 2004; 279(37): 38838–38843
CrossRef Pubmed Google scholar
[41]
Kaneko MK, Kato Y, Kameyama A, Ito H, Kuno A, Hirabayashi J, Kubota T, Amano K, Chiba Y, Hasegawa Y, Sasagawa I, Mishima K, Narimatsu H. Functional glycosylation of human podoplanin: glycan structure of platelet aggregation-inducing factor. FEBS Lett 2007; 581(2): 331–336
CrossRef Pubmed Google scholar
[42]
Pan Y, Yago T, Fu J, Herzog B, McDaniel JM, Mehta-D’Souza P, Cai X, Ruan C, McEver RP, West C, Dai K, Chen H, Xia L. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets. Blood 2014; 124(24): 3656–3665
CrossRef Pubmed Google scholar
[43]
Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, Inoue O, Ozaki Y, Narimatsu H. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008; 99(1): 54–61
Pubmed
[44]
Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T. Molecular identification of Aggrus/T1α as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003; 278(51): 51599–51605
CrossRef Pubmed Google scholar
[45]
Bianchi R, Fischer E, Yuen D, Ernst E, Ochsenbein AM, Chen L, Otto VI, Detmar M. Mutation of threonine 34 in mouse podoplanin-Fc reduces CLEC-2 binding and toxicity in vivo while retaining antilymphangiogenic activity. J Biol Chem 2014; 289(30): 21016–21027
CrossRef Pubmed Google scholar
[46]
Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014; 22(12): 1711–1721
CrossRef Pubmed Google scholar
[47]
Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003; 299(5604): 247–251
CrossRef Pubmed Google scholar
[48]
Sebzda E, Hibbard C, Sweeney S, Abtahian F, Bezman N, Clemens G, Maltzman JS, Cheng L, Liu F, Turner M, Tybulewicz V, Koretzky GA, Kahn ML. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell 2006; 11(3): 349–361
CrossRef Pubmed Google scholar
[49]
Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81(5): 695–704
CrossRef Pubmed Google scholar
[50]
Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, Takano K, Yatomi Y, Hirashima M, Fujii H, Suzuki-Inoue K, Ozaki Y. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 2012; 287(26): 22241–22252
CrossRef Pubmed Google scholar
[51]
Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fässler R, Alitalo K, Binder BR, Kerjaschki D. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115(19): 3997–4005
CrossRef Pubmed Google scholar
[52]
Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, Herzog B, Lu M, Nieswandt B, Oliver G, Makinen T, Xia L, Kahn ML. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014; 124(1): 273–284
CrossRef Pubmed Google scholar
[53]
Ngo VN, Cornall RJ, Cyster JG. Splenic T zone development is B cell dependent. J Exp Med 2001; 194(11): 1649–1660
CrossRef Pubmed Google scholar
[54]
Bekiaris V, Withers D, Glanville SH, McConnell FM, Parnell SM, Kim MY, Gaspal FM, Jenkinson E, Sweet C, Anderson G, Lane PJ. Role of CD30 in B/T segregation in the spleen. J Immunol 2007; 179(11): 7535–7543
CrossRef Pubmed Google scholar
[55]
Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B, Wucherpfennig K, Turley S, Carroll MC, Sobel RA, Bettelli E, Kuchroo VK. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011; 35(6): 986–996
CrossRef Pubmed Google scholar
[56]
Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2006; 25(4): 677–694
CrossRef Pubmed Google scholar
[57]
Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 2012; 12(3): 210–219
CrossRef Pubmed Google scholar
[58]
Ordóñez NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol 2006; 13(2): 83–88
CrossRef Pubmed Google scholar
[59]
Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 2012; 129(Suppl 1): S30–S37
CrossRef Pubmed Google scholar
[60]
Dang Q, Liu J, Li J, Sun Y. Podoplanin: a novel regulator of tumor invasion and metastasis. Med Oncol 2014; 31(9): 24
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by a grant from the National Natural Science Foundation of China (No. 31400692).
Compliance with ethics guidelines
Yanfang Pan and Lijun Xia declare that they have no conflicts of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1278 KB)

Accesses

Citations

Detail

Sections
Recommended

/