Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse
Yuting Tan, Han Liu, Saijuan Chen
Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse
Genetic mutations are considered to drive the development of acute myeloid leukemia (AML). With the rapid progress in sequencing technologies, many newly reported genes that are recurrently mutated in AML have been found to govern the initiation and relapse of AML. These findings suggest the need to distinguish the driver mutations, especially the most primitive single mutation, from the subsequent passenger mutations. Recent research on DNA methyltransferase 3A (DNMT3A) mutations provides the first proof-of-principle investigation on the identification of preleukemic stem cells (pre-LSCs) in AML patients. Although DNMT3A mutations alone may only transform hematopoietic stem cells into pre-LSCs without causing the full-blown leukemia, the function of this driver mutation appear to persist from AML initiation up to relapse. Therefore, identifying and targeting preleukemic mutations, such as DNMT3A mutations, in AML is a promising strategy for treatment and reduction of relapse risk.
preleukemic stem cell / acute myeloid leukemia / relapse / DNMT3A
[1] |
Chen SJ, Shen Y, Chen Z. A panoramic view of acute myeloid leukemia. Nat Genet 2013; 45(6): 586–587
CrossRef
Pubmed
Google scholar
|
[2] |
Miller CA, Wilson RK, Ley TJ. Genomic landscapes and clonality of de novo AML. N Engl J Med 2013; 369(15): 1473
Pubmed
|
[3] |
Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059–2074
CrossRef
Pubmed
Google scholar
|
[4] |
Steensma DP. The beginning of the end of the beginning in cancer genomics. N Engl J Med 2013; 368(22): 2138–2140
CrossRef
Pubmed
Google scholar
|
[5] |
Marchesi V. Genetics: the AML mutational landscape. Nat Rev Clin Oncol 2013; 10(6): 305
Pubmed
|
[6] |
Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12(9): 599–612
CrossRef
Pubmed
Google scholar
|
[7] |
Hájková H, Marková J, Haškovec C, Sárová I, Fuchs O, Kostečka A, Cetkovský P, Michalová K, Schwarz J. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res 2012; 36(9): 1128–1133
CrossRef
Pubmed
Google scholar
|
[8] |
Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 2003; 22(42): 6472–6478
CrossRef
Pubmed
Google scholar
|
[9] |
Chan SM, Majeti R. Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol 2013; 98(6): 648–657
CrossRef
Pubmed
Google scholar
|
[10] |
Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14(3): 275–291
CrossRef
Pubmed
Google scholar
|
[11] |
Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, Mardis ER, Wilson RK, DiPersio JF. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481(7382): 506–510
CrossRef
Pubmed
Google scholar
|
[12] |
Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4(149): 149ra118
CrossRef
Pubmed
Google scholar
|
[13] |
Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC, Lemischka IR. The genetic program of hematopoietic stem cells. Science 2000; 288(5471): 1635–1640
CrossRef
Pubmed
Google scholar
|
[14] |
Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002; 298(5593): 601–604
CrossRef
Pubmed
Google scholar
|
[15] |
Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 2006; 169(2): 338–346
CrossRef
Pubmed
Google scholar
|
[16] |
Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD. Clonal dynamics of native haematopoiesis. Nature 2014; 514(7522): 322–327
CrossRef
Pubmed
Google scholar
|
[17] |
Pandolfi A, Barreyro L, Steidl U. Concise review: preleukemic stem cells: molecular biology and clinical implications of the precursors to leukemia stem cells. Stem Cells Transl Med 2013; 2(2): 143–150
CrossRef
Pubmed
Google scholar
|
[18] |
Warner JK, Wang JC, Hope KJ, Jin L, Dick JE. Concepts of human leukemic development. Oncogene 2004; 23(43): 7164–7177
CrossRef
Pubmed
Google scholar
|
[19] |
Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci 2005; 1044(1): 1–5
CrossRef
Pubmed
Google scholar
|
[20] |
Luo L, Han ZC. Leukemia stem cells. Int J Hematol 2006; 84(2): 123–127
CrossRef
Pubmed
Google scholar
|
[21] |
Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442(7104): 818–822
CrossRef
Pubmed
Google scholar
|
[22] |
Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7(11): 823–833
CrossRef
Pubmed
Google scholar
|
[23] |
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645–648
CrossRef
Pubmed
Google scholar
|
[24] |
Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2(12): 1329–1337
CrossRef
Pubmed
Google scholar
|
[25] |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730–737
CrossRef
Pubmed
Google scholar
|
[26] |
Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem 2012; 287(37): 30941–30951
CrossRef
Pubmed
Google scholar
|
[27] |
Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJ, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ; HALT Pan-Leukemia Gene Panel Consortium, Brown AM, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JC, Dick JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328–333
CrossRef
Pubmed
Google scholar
|
[28] |
Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014; 111(7): 2548–2553
CrossRef
Pubmed
Google scholar
|
[29] |
Jan M, Majeti R. Clonal evolution of acute leukemia genomes. Oncogene 2013; 32(2): 135–140
CrossRef
Pubmed
Google scholar
|
[30] |
Xue L, Pulikkan JA, Valk PJ, Castilla LH. NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfβ-SMMHC via activation of MEK/ERK axis. Blood 2014; 124(3): 426–436
CrossRef
Pubmed
Google scholar
|
[31] |
Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP, Le Beau MM, Kogan SC, Castilla LH. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006; 9(1): 57–68
CrossRef
Pubmed
Google scholar
|
[32] |
Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, Mollica L, Li J, Viale A, Heguy A, Hassimi M, Socci N, Bhatt PK, Gonen M, Mason CE, Melnick A, Godley LA, Brennan CW, Abdel-Wahab O, Levine RL. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44(11): 1179–1181
CrossRef
Pubmed
Google scholar
|
[33] |
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371(26): 2488–2498
CrossRef
Pubmed
Google scholar
|
[34] |
Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landén M, Höglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Grönberg H, Hultman CM, McCarroll SA. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371(26): 2477–2487
CrossRef
Pubmed
Google scholar
|
[35] |
Majeti R. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. Best Pract Res Clin Haematol 2014; 27(3−4): 229–234
CrossRef
Pubmed
Google scholar
|
[36] |
Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5(4): 311–321
CrossRef
Pubmed
Google scholar
|
[37] |
Wiseman DH, Greystoke BF, Somervaille TCP. The variety of leukemic stem cells in myeloid malignancy. Oncogene 2014; 33(24): 3091–3098
CrossRef
Pubmed
Google scholar
|
[38] |
Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404(6774): 193–197
CrossRef
Pubmed
Google scholar
|
[39] |
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9(6): 465–476
CrossRef
Pubmed
Google scholar
|
[40] |
Oki Y, Issa JP. Epigenetic mechanisms in AML — a target for therapy. Cancer Treat Res 2010; 145: 19–40
CrossRef
Pubmed
Google scholar
|
[41] |
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74(1): 481–514
CrossRef
Pubmed
Google scholar
|
[42] |
Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005; 6(5): 351–360
CrossRef
Pubmed
Google scholar
|
[43] |
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31(2): 89–97
CrossRef
Pubmed
Google scholar
|
[44] |
Ehrlich M, Lacey M. DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol 2013; 754: 31–56
CrossRef
Pubmed
Google scholar
|
[45] |
Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 2014; 28(3): 485–496
CrossRef
Pubmed
Google scholar
|
[46] |
Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 2014; 30(10): 464–474
CrossRef
Pubmed
Google scholar
|
[47] |
Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, Boyiadzis M. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 2014; 28(9): 1774–1783
CrossRef
Pubmed
Google scholar
|
[48] |
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009; 1(2): 239–259
CrossRef
Pubmed
Google scholar
|
[49] |
Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21(35): 5400–5413
CrossRef
Pubmed
Google scholar
|
[50] |
Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V, Strausberg RL, Simpson AJ, Ren B. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 2012; 22(2): 246–258
CrossRef
Pubmed
Google scholar
|
[51] |
Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN, Xiong SM, Gu ZH, Wang KK, Zeng R, Chen Z, Chen SJ. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci USA 2014; 111(7): 2620–2625
CrossRef
Pubmed
Google scholar
|
[52] |
Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44(1): 23–31
CrossRef
Pubmed
Google scholar
|
[53] |
Lund K, Cole JJ, VanderKraats ND, McBryan T, Pchelintsev NA, Clark W, Copland M, Edwards JR, Adams PD. DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML. Genome Biol 2014; 15(8): 406
CrossRef
Pubmed
Google scholar
|
[54] |
Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget 2012; 3(4): 462–474
Pubmed
|
[55] |
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363(25): 2424–2433
CrossRef
Pubmed
Google scholar
|
[56] |
Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43(4): 309–315
CrossRef
Pubmed
Google scholar
|
[57] |
Roller A, Grossmann V, Bacher U, Poetzinger F, Weissmann S, Nadarajah N, Boeck L, Kern W, Haferlach C, Schnittger S, Haferlach T, Kohlmann A. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 2013; 27(7): 1573–1578
CrossRef
Pubmed
Google scholar
|
[58] |
Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 2012; 366(1): 95–96
CrossRef
Pubmed
Google scholar
|
[59] |
Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MR, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366(12): 1079–1089
CrossRef
Pubmed
Google scholar
|
[60] |
Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem 2012; 287(37): 30941–30951
CrossRef
Pubmed
Google scholar
|
[61] |
Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R, Meyer MR, Erdmann-Gilmore P, Townsend RR, Wilson RK, Ley TJ. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 2014; 25(4): 442–454
CrossRef
Pubmed
Google scholar
|
[62] |
Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry CV, Challen GA, Li W, Wheeler D, Rebel VI, Goodell MA. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2015; 125(4): 629–638
CrossRef
Pubmed
Google scholar
|
[63] |
Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2015; 517(7536): 640–644
CrossRef
Pubmed
Google scholar
|
[64] |
McKenny AS, Levine RL. Isocitrate dehydrogenase mutations in leukemia. J Clin Invest 2013; 123(9): 3672–3677
|
[65] |
Gaidzik VI, Paschka P, Späth D, Habdank M, Köhne CH, Germing U, von Lilienfeld-Toal M, Held G, Horst HA, Haase D, Bentz M, Götze K, Döhner H, Schlenk RF, Bullinger L, Döhner K. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol 2012; 30(12): 1350–1357
CrossRef
Pubmed
Google scholar
|
[66] |
Rakheja D, Konoplev S, Medeiros LJ, Chen W. IDH mutations in acute myeloid leukemia. Hum Pathol 2012; 43(10): 1541–1551
CrossRef
Pubmed
Google scholar
|
[67] |
Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med 2015; 7(1): 9
CrossRef
Pubmed
Google scholar
|
[68] |
Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, Rad L, Ellis P, Andrews R, Banerjee R, Grove C, Wang W, Liu P, Wright P, Arends M, Bradley A. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43(5): 470–475
CrossRef
Pubmed
Google scholar
|
[69] |
Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA methyltransferases in hematologic malignancies. Semin Hematol 2013; 50(1): 48–60
CrossRef
Pubmed
Google scholar
|
[70] |
Ye D, Xiong Y, Guan KL. The mechanisms of IDH mutations in tumorigenesis. Cell Res 2012; 22(7): 1102–1104
CrossRef
Pubmed
Google scholar
|
[71] |
Ye D, Ma S, Xiong Y, Guan KL. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 2013; 23(3): 274–276
CrossRef
Pubmed
Google scholar
|
[72] |
Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339(6127): 1621–1625
CrossRef
Pubmed
Google scholar
|
[73] |
Eifert C, Powers RS. From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. Nat Rev Cancer 2012; 12(8): 572–578
CrossRef
Pubmed
Google scholar
|
[74] |
Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 2005; 294(11): 1359–1366
CrossRef
Pubmed
Google scholar
|
[75] |
Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013; 121(18): 3563–3572
CrossRef
Pubmed
Google scholar
|
[76] |
McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J; Understanding Society Scientific Group, Crawley C, Craig J, Scott MA, Hodkinson C, Baxter J, Rad R, Forsyth DR, Quail MA, Zeggini E, Ouwehand W, Varela I, Vassiliou GS. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Reports 2015; 10(8): 1239–1245
CrossRef
Pubmed
Google scholar
|
[77] |
Van Zant G, Liang Y. Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 2012; 1(9): 651–657
CrossRef
Pubmed
Google scholar
|
[78] |
Keller G, Snodgrass R. Life span of multipotential hematopoietic stem cells in vivo. J Exp Med 1990; 171(5): 1407–1418
CrossRef
Pubmed
Google scholar
|
[79] |
Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: early key events during leukemogenesis. Exp Hematol 2015; 43(8): 609–624
CrossRef
Google scholar
|
/
〈 | 〉 |