Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases
Joseph Cannova, Peter Breslin S.J., Jiwang Zhang
Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases
Toll-like receptors (TLRs), which are found in innate immune cells, are essential mediators of rapid inflammatory responses and appropriate T-cell activation in response to infection and tissue damage. Accumulating evidence suggests that TLR signaling is involved in normal hematopoiesis and specific hematologic pathologies. Particular TLRs and their downstream signaling mediators are expressed not only in terminally differentiated innate immune cells but also in early hematopoietic progenitors. Sterile activation of TLR signaling is required to generate early embryonic hematopoietic progenitor cells. In adult animals, TLR signaling directly or indirectly promotes differentiation of myeloid cells at the expense of that of lymphoid cells and the self-renewal of hematopoietic stem cells during infection and tissue damage. Activating mutations of the MyD88 gene, which codes for a key adaptor involved in TLR signaling, are commonly detected in B-cell lymphomas and other B-cell hematopathologies. Dysregulated TLR signaling contributes to the pathogenesis of many hematopoietic disorders, including bone marrow failure, myelodysplastic syndrome, and acute myeloid leukemia. Complete elucidation of the molecular mechanisms by which TLR signaling mediates the regulation of both normal and pathogenic hematopoiesis will prove valuable to the development of targeted therapies and strategies for improved treatment of hematopoietic disorders.
TLR / MyD88 / hematopoiesis / bone marrow failure / leukemia / myelodysplastic syndrome
[1] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell2010; 140(6): 805–820
CrossRef
Pubmed
Google scholar
|
[2] |
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol2014; 5: 461
CrossRef
Pubmed
Google scholar
|
[3] |
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol2014; 14(8): 546–558
CrossRef
Pubmed
Google scholar
|
[4] |
Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science2011; 332(6035): 1284–1288
CrossRef
Pubmed
Google scholar
|
[5] |
Yáñez A, Goodridge HS, Gozalbo D, Gil ML. TLRs control hematopoiesis during infection. Eur J Immunol2013; 43(10): 2526–2533
CrossRef
Pubmed
Google scholar
|
[6] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol2010; 11(5): 373–384
CrossRef
Pubmed
Google scholar
|
[7] |
Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity2008; 29(2): 182–191
CrossRef
Pubmed
Google scholar
|
[8] |
Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science2012; 335(6070): 859–864
CrossRef
Pubmed
Google scholar
|
[9] |
Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol2007; 8(7): 772–779
CrossRef
Pubmed
Google scholar
|
[10] |
Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science2013; 339(6126): 1426–1429
CrossRef
Pubmed
Google scholar
|
[11] |
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol1999; 162(7): 3749–3752
Pubmed
|
[12] |
Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol2002; 169(1): 10–14
CrossRef
Pubmed
Google scholar
|
[13] |
Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol2001; 13(7): 933–940
CrossRef
Pubmed
Google scholar
|
[14] |
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity1999; 11(4): 443–451
CrossRef
Pubmed
Google scholar
|
[15] |
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science2004; 303(5663): 1526–1529
CrossRef
Pubmed
Google scholar
|
[16] |
Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol2015; 22(2): 109–115
CrossRef
Pubmed
Google scholar
|
[17] |
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell2007; 130(6): 1071–1082
CrossRef
Pubmed
Google scholar
|
[18] |
Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity2009; 31(6): 873–884
CrossRef
Pubmed
Google scholar
|
[19] |
Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, Segal DM. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA2008; 105(1): 258–263
CrossRef
Pubmed
Google scholar
|
[20] |
Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science2008; 320(5874): 379–381
CrossRef
Pubmed
Google scholar
|
[21] |
Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature2009; 458(7242): 1191–1195
CrossRef
Pubmed
Google scholar
|
[22] |
Ulevitch RJ, Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol1999; 11(1): 19–22
CrossRef
Pubmed
Google scholar
|
[23] |
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science1990; 249(4975): 1431–1433
CrossRef
Pubmed
Google scholar
|
[24] |
Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med1999; 189(11): 1777–1782
CrossRef
Pubmed
Google scholar
|
[25] |
Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature2008; 452(7184): 234–238
CrossRef
Pubmed
Google scholar
|
[26] |
Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev2015
CrossRef
Pubmed
Google scholar
|
[27] |
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science2010; 327(5963): 291–295
CrossRef
Pubmed
Google scholar
|
[28] |
Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol2006; 290(3): C917–C924
CrossRef
Pubmed
Google scholar
|
[29] |
Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol2007; 8(5): 487–496
CrossRef
Pubmed
Google scholar
|
[30] |
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature2002; 418(6894): 191–195
CrossRef
Pubmed
Google scholar
|
[31] |
Luong M, Zhang Y, Chamberlain T, Zhou T, Wright JF, Dower K, Hall JP. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm (Lond)2012; 9(1): 11
CrossRef
Pubmed
Google scholar
|
[32] |
Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res2009; 10(1): 31
CrossRef
Pubmed
Google scholar
|
[33] |
Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science2003; 301(5633): 640–643
CrossRef
Pubmed
Google scholar
|
[34] |
Sheedy FJ, O’Neill LA. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol2007; 82(2): 196–203
CrossRef
Pubmed
Google scholar
|
[35] |
Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep2014; 6: 97
CrossRef
Pubmed
Google scholar
|
[36] |
Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol2008; 9(4): 361–368
CrossRef
Pubmed
Google scholar
|
[37] |
Carty M, Goodbody R, Schröder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol2006; 7(10): 1074–1081
CrossRef
Pubmed
Google scholar
|
[38] |
Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature2010; 465(7300): 885–890
CrossRef
Pubmed
Google scholar
|
[39] |
Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature1996; 383(6599): 443–446
CrossRef
Pubmed
Google scholar
|
[40] |
Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect2004; 6(14): 1333–1338
CrossRef
Pubmed
Google scholar
|
[41] |
Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu HB. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem2004; 279(15): 15652–15661
CrossRef
Pubmed
Google scholar
|
[42] |
Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature2005; 434(7034): 772–777
CrossRef
Pubmed
Google scholar
|
[43] |
Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol2004; 5(10): 1061–1068
CrossRef
Pubmed
Google scholar
|
[44] |
Balkhi MY, Fitzgerald KA, Pitha PM. Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol2008; 28(24): 7296–7308
CrossRef
Pubmed
Google scholar
|
[45] |
Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem2005; 280(17): 17005–17012
CrossRef
Pubmed
Google scholar
|
[46] |
Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc Natl Acad Sci USA2004; 101(10): 3533–3538
CrossRef
Pubmed
Google scholar
|
[47] |
Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis2015; 20(2): 196–209
CrossRef
Pubmed
Google scholar
|
[48] |
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem2013; 288(43): 31268–31279
CrossRef
Pubmed
Google scholar
|
[49] |
Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, Kovtonyuk LV, McCoy KD, Hapfelmeier S, Ochsenbein AF, Manz MG, Slack E, Macpherson AJ. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol2014; 193(10): 5273–5283
CrossRef
Pubmed
Google scholar
|
[50] |
He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, Liu F. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood2015; 125(7): 1098–1106
CrossRef
Pubmed
Google scholar
|
[51] |
Sawamiphak S, Kontarakis Z, Stainier DY. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev Cell2014; 31(5): 640–653
CrossRef
Pubmed
Google scholar
|
[52] |
Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev2014; 28(23): 2597–2612
CrossRef
Pubmed
Google scholar
|
[53] |
Orelio C, Haak E, Peeters M, Dzierzak E. Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood2008; 112(13): 4895–4904
CrossRef
Pubmed
Google scholar
|
[54] |
Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell2006; 11(2): 171–180
CrossRef
Pubmed
Google scholar
|
[55] |
Espín-Palazón R, Stachura DL, Campbell CA, García-Moreno D, Del Cid N, Kim AD, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell2014; 159(5): 1070–1085
CrossRef
Pubmed
Google scholar
|
[56] |
Veldman MB, Lin S. Stem cells on fire: inflammatory signaling in HSC emergence. Dev Cell2014; 31(5): 517–518
CrossRef
Pubmed
Google scholar
|
[57] |
Cannistra SA, Griffin JD. Regulation of the production and function of granulocytes and monocytes. Semin Hematol1988; 25(3): 173–188
Pubmed
|
[58] |
Qiu P, Pan PC, Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development1998; 125(10): 1909–1920
Pubmed
|
[59] |
Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity2006; 24(6): 801–812
CrossRef
Pubmed
Google scholar
|
[60] |
De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia2009; 23(11): 2063–2074
CrossRef
Pubmed
Google scholar
|
[61] |
Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature2010; 465(7299): 793–797
CrossRef
Pubmed
Google scholar
|
[62] |
Yáñez A, Murciano C, O'Connor JE, Gozalbo D, Gil ML. Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect2009; 11(4): 531–535
CrossRef
Pubmed
Google scholar
|
[63] |
Yáñez A, Megías J, O’Connor JE, Gozalbo D, Gil ML. Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS ONE2011; 6(9): e24761
CrossRef
Pubmed
Google scholar
|
[64] |
Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, Humphrey MB, Yang Q, Borghesi LA, Kincade PW. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol2011; 186(9): 5367–5375
CrossRef
Pubmed
Google scholar
|
[65] |
Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol2014; 14(5): 302–314
CrossRef
Pubmed
Google scholar
|
[66] |
Sioud M, Fløisand Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. Eur J Immunol2007; 37(10): 2834–2846
CrossRef
Pubmed
Google scholar
|
[67] |
Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borghesi LA, Farrar MA, Kincade PW. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood2008; 112(9): 3753–3761
CrossRef
Pubmed
Google scholar
|
[68] |
Buechler MB, Teal TH, Elkon KB, Hamerman JA. Cutting edge: Type I IFN drives emergency myelopoiesis and peripheral myeloid expansion during chronic TLR7 signaling. J Immunol2013; 190(3): 886–891
CrossRef
Pubmed
Google scholar
|
[69] |
Megías J, Yáñez A, Moriano S, O’Connor JE, Gozalbo D, Gil ML. Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells2012; 30(7): 1486–1495
CrossRef
Pubmed
Google scholar
|
[70] |
Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell2014; 14(4): 445–459
CrossRef
Pubmed
Google scholar
|
[71] |
Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell2007; 131(5): 994–1008
CrossRef
Pubmed
Google scholar
|
[72] |
Yáñez A, Hassanzadeh-Kiabi N, Ng MY, Megías J, Subramanian A, Liu GY, Underhill DM, Gil ML, Goodridge HS. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol2013; 43(8): 2114–2125
CrossRef
Pubmed
Google scholar
|
[73] |
Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol2010; 71(3): 235–244
CrossRef
Pubmed
Google scholar
|
[74] |
Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol2009; 182(12): 7963–7973
CrossRef
Pubmed
Google scholar
|
[75] |
Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol2012; 188(12): 5824–5828
CrossRef
Pubmed
Google scholar
|
[76] |
Schürch CM, Riether C, Ochsenbein AF. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell2014; 14(4): 460–472
CrossRef
Pubmed
Google scholar
|
[77] |
de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res2009; 668(1-2): 11–19
CrossRef
Pubmed
Google scholar
|
[78] |
Vanderwerf SM, Svahn J, Olson S, Rathbun RK, Harrington C, Yates J, Keeble W, Anderson DC, Anur P, Pereira NF, Pilonetto DV, Pasquini R, Bagby GC. TLR8-dependent TNF-(α) overexpression in Fanconi anemia group C cells. Blood2009; 114(26): 5290–5298
CrossRef
Pubmed
Google scholar
|
[79] |
Garbati MR, Hays LE, Keeble W, Yates JE, Rathbun RK, Bagby GC. FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Blood2013; 122(18): 3197–3205
CrossRef
Pubmed
Google scholar
|
[80] |
Anur P, Yates J, Garbati MR, Vanderwerf S, Keeble W, Rathbun K, Hays LE, Tyner JW, Svahn J, Cappelli E, Dufour C, Bagby GC. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood2012; 119(9): 1992–2002
CrossRef
Pubmed
Google scholar
|
[81] |
Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Béka’ssy AN, Scimè R, Pistorio A, Pistoia V. TNF-α and IFN-γ are overexpressed in the bone marrow of Fanconi anemia patients and TNF-α suppresses erythropoiesis in vitro. Blood2003; 102(6): 2053–2059
CrossRef
Pubmed
Google scholar
|
[82] |
Bijangi-Vishehsaraei K, Saadatzadeh MR, Werne A, McKenzie KA, Kapur R, Ichijo H, Haneline LS. Enhanced TNF-α-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood2005; 106(13): 4124–4130
CrossRef
Pubmed
Google scholar
|
[83] |
Pang Q, Keeble W, Diaz J, Christianson TA, Fagerlie S, Rathbun K, Faulkner GR, O’Dwyer M, Bagby GC Jr. Role of double-stranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon γ, tumor necrosis factor-α, and double-stranded RNA. Blood2001; 97(6): 1644–1652
CrossRef
Pubmed
Google scholar
|
[84] |
Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC. FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-γ/TNF-α-mediated cytotoxicity. EMBO J2001; 20(16): 4478–4489
CrossRef
Pubmed
Google scholar
|
[85] |
Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem2002; 277(51): 49638–49643
CrossRef
Pubmed
Google scholar
|
[86] |
Schultz JC, Shahidi NT. Tumor necrosis factor-α overproduction in Fanconi’s anemia. Am J Hematol1993; 42(2): 196–201
CrossRef
Pubmed
Google scholar
|
[87] |
Zhang X, Li J, Sejas DP, Rathbun KR, Bagby GC, Pang Q. The Fanconi anemia proteins functionally interact with the protein kinase regulated by RNA (PKR). J Biol Chem2004; 279(42): 43910–43919
CrossRef
Pubmed
Google scholar
|
[88] |
Li J, Sejas DP, Zhang X, Qiu Y, Nattamai KJ, Rani R, Rathbun KR, Geiger H, Williams DA, Bagby GC, Pang Q. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest2007; 117(11): 3283–3295
CrossRef
Pubmed
Google scholar
|
[89] |
Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity2013; 38(2): 209–223
CrossRef
Pubmed
Google scholar
|
[90] |
Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. Hematology (Am Soc Hematol Educ Program)2006; 2006(1): 72–77
CrossRef
Pubmed
Google scholar
|
[91] |
Young NS, Bacigalupo A, Marsh JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant2010; 16(1 Suppl): S119–S125
CrossRef
Pubmed
Google scholar
|
[92] |
Bagby GC, Fleischman AG. The stem cell fitness landscape and pathways of molecular leukemogenesis. Front Biosci (Schol Ed)2011; 3(1): 487–500
CrossRef
Pubmed
Google scholar
|
[93] |
Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology2010; 57(5): 655–670
CrossRef
Pubmed
Google scholar
|
[94] |
Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology2010; 57(5): 655–670
CrossRef
Pubmed
Google scholar
|
[95] |
Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood2012; 120(6): 1185–1196
CrossRef
Pubmed
Google scholar
|
[96] |
Afable MG 2nd, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, Kalaycio M, O’Keefe CL, Maciejewski JP. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood2011; 117(25): 6876–6884
CrossRef
Pubmed
Google scholar
|
[97] |
Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol2008; 15(3): 162–168
CrossRef
Pubmed
Google scholar
|
[98] |
Sloand EM, Rezvani K. The role of the immune system in myelodysplasia: implications for therapy. Semin Hematol2008; 45(1): 39–48
CrossRef
Pubmed
Google scholar
|
[99] |
Parker CJ. Paroxysmal nocturnal hemoglobinuria. Curr Opin Hematol2012; 19(3): 141–148
CrossRef
Pubmed
Google scholar
|
[100] |
Cazzola M, Della Porta MG, Travaglino E, Malcovati L. Classification and prognostic evaluation of myelodysplastic syndromes. Semin Oncol2011; 38(5): 627–634
CrossRef
Pubmed
Google scholar
|
[101] |
Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y, Zheng H, Fang Z, Nguyen M, Pierce S, Chen R, Wang H, Wu C, Garcia-Manero G. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS ONE2013; 8(8): e71120
CrossRef
Pubmed
Google scholar
|
[102] |
Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D, Pierce S, Jia Y, Zheng H, Wang H, Wang X, Nguyen M, Wang SA, Ebert B, Bejar R, Levine R, Abdel-Wahab O, Kleppe M, Ganan-Gomez I, Kantarjian H, Garcia-Manero G. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia2013; 27(9): 1832–1840
CrossRef
Pubmed
Google scholar
|
[103] |
Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res2007; 13(4): 1154–1160
CrossRef
Pubmed
Google scholar
|
[104] |
Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood2002; 100(10): 3553–3560
CrossRef
Pubmed
Google scholar
|
[105] |
Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, Spinelli JJ, Eaves CJ, Eaves AC, Horsman DE, Lam WL, Karsan A. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood2008; 112(8): 3412–3424
CrossRef
Pubmed
Google scholar
|
[106] |
Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood2008; 111(3): 1534–1542
CrossRef
Pubmed
Google scholar
|
[107] |
Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell2013; 24(1): 90–104
CrossRef
Pubmed
Google scholar
|
[108] |
Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U, Garcia-Manero G. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia2015; 29(7): 1458–1469
CrossRef
Pubmed
Google scholar
|
[109] |
Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, Jädersten M, Killick S, Fidler C, Cazzola M, Hellström-Lindberg E, Wainscoat JS. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol2007; 139(4): 578–589
CrossRef
Pubmed
Google scholar
|
[110] |
Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med2010; 16(1): 49–58
CrossRef
Pubmed
Google scholar
|
[111] |
Keerthivasan G, Mei Y, Zhao B, Zhang L, Harris CE, Gao J, Basiorka AA, Schipma MJ, McElherne J, Yang J, Verma AK, Pellagatti A, Boultwood J, List AF, Williams DA, Ji P. Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood2014; 124(5): 780–790
CrossRef
Pubmed
Google scholar
|
[112] |
Abou Zahr A, Saad Aldin E, Komrokji RS, Zeidan AM. Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. J Blood Med2015; 6: 1–16
CrossRef
Pubmed
Google scholar
|
[113] |
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol2009; 9(3): 162–174
CrossRef
Pubmed
Google scholar
|
[114] |
Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother2006; 55(3): 237–245
CrossRef
Pubmed
Google scholar
|
[115] |
Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest2013; 123(11): 4595–4611
CrossRef
Pubmed
Google scholar
|
[116] |
Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol2009; 86(3): 557–566
CrossRef
Pubmed
Google scholar
|
[117] |
Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med2007; 13(9): 1042–1049
CrossRef
Pubmed
Google scholar
|
[118] |
Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res2012; 35(8): 1297–1316
CrossRef
Pubmed
Google scholar
|
[119] |
Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptors in cancer. Oncogene2014; 33(27): 3485–3495
CrossRef
Pubmed
Google scholar
|
[120] |
Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol2013; 93(6): 847–863
CrossRef
Pubmed
Google scholar
|
[121] |
Coste I, Le Corf K, Kfoury A, Hmitou I, Druillennec S, Hainaut P, Eychene A, Lebecque S, Renno T. Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J Clin Invest2010; 120(10): 3663–3667
CrossRef
Pubmed
Google scholar
|
[122] |
Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res2006; 66(7): 3859–3868
CrossRef
Pubmed
Google scholar
|
[123] |
Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M, Sano T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer2010; 102(5): 908–915
CrossRef
Pubmed
Google scholar
|
[124] |
Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene2009; 28(49): 4353–4363
CrossRef
Pubmed
Google scholar
|
[125] |
Silasi DA, Alvero AB, Illuzzi J, Kelly M, Chen R, Fu HH, Schwartz P, Rutherford T, Azodi M, Mor G. MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer. Yale J Biol Med2006; 79(3-4): 153–163
Pubmed
|
[126] |
Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, Zhu M, Fan X, Liang Y, Zhang L, Guo Y, Zhao J. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res2013; 19(11): 2905–2916
CrossRef
Pubmed
Google scholar
|
[127] |
Je EM, Kim SS, Yoo NJ, Lee SH. Mutational and expressional analyses of MYD88 gene in common solid cancers. Tumori2012; 98(5): 663–669
CrossRef
Pubmed
Google scholar
|
[128] |
Agúndez JA, García-Martín E, Devesa MJ, Carballo M, Martínez C, Lee-Brunner A, Fernández C, Díaz-Rubio M, Ladero JM. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology2012; 82(1): 35–40
CrossRef
Pubmed
Google scholar
|
[129] |
Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X, Xi Z, Jianquan Z, Songyao J. Single nucleotide polymorphisms of Toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS ONE2011; 6(4): e19466
CrossRef
Pubmed
Google scholar
|
[130] |
Weng PH, Huang YL, Page JH, Chen JH, Xu J, Koutros S, Berndt S, Chanock S, Yeager M, Witte JS, Eeles RA, Easton DF, Neal DE, Donovan J, Hamdy FC, Muir KR, Giles G, Severi G, Smith JR, Balistreri CR, Shui IM, Chen YC. Polymorphisms of an innate immune gene, toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS ONE2014; 9(10): e110569
CrossRef
Pubmed
Google scholar
|
[131] |
Vidas Z. Polymorphisms in Toll-like receptor genes–implications for prostate cancer development. Coll Antropol2010; 34(2): 779–783
Pubmed
|
[132] |
Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA2008; 105(2): 652–656
CrossRef
Pubmed
Google scholar
|
[133] |
Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol2008; 48(2): 380–381
CrossRef
Pubmed
Google scholar
|
[134] |
Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science2007; 317(5834): 121–124
CrossRef
Pubmed
Google scholar
|
[135] |
Melkamu T, Qian X, Upadhyaya P, O’Sullivan MG, Kassie F. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. Vet Pathol2013; 50(5): 895–902
CrossRef
Pubmed
Google scholar
|
[136] |
Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H, Elmets CA. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res2008; 68(2): 615–622
CrossRef
Pubmed
Google scholar
|
[137] |
Li X, Eckard J, Shah R, Malluck C, Frenkel K. Interleukin-1alpha up-regulation in vivo by a potent carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) and control of DMBA-induced inflammatory responses. Cancer Res2002; 62(2): 417–423
Pubmed
|
[138] |
Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Yaghmaie M, Hadjati J. In vitro induction of potent tumor-specific cytotoxic T lymphocytes using TLR agonist-activated AML-DC. Target Oncol2014; 9(3): 225–237
CrossRef
Pubmed
Google scholar
|
[139] |
Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res2014; 38(6): 673–681
CrossRef
Pubmed
Google scholar
|
[140] |
Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Hadjati J. Synergistic effect of Toll-like receptor 4 and 7/8 agonists is necessary to generate potent blast-derived dendritic cells in Acute Myeloid Leukemia. Leuk Res2012; 36(9): 1193–1199
CrossRef
Pubmed
Google scholar
|
[141] |
Li L, Reinhardt P, Schmitt A, Barth TF, Greiner J, Ringhoffer M, Döhner H, Wiesneth M, Schmitt M. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother2005; 54(7): 685–693
CrossRef
Pubmed
Google scholar
|
[142] |
Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia2015; 29(4): 918–926
CrossRef
Pubmed
Google scholar
|
[143] |
Je EM, Yoo NJ, Lee SH. Absence of MYD88 gene mutation in acute leukemias and multiple myelomas. Eur J Haematol2012; 88(3): 273–274
CrossRef
Pubmed
Google scholar
|
[144] |
Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J Exp Med2014; 211(6): 1093–1108
CrossRef
Pubmed
Google scholar
|
[145] |
Liu X, Zhang J, Li J, Volk A, Breslin P, Zhang J, Zhang Z. The synergistic repressive effect of NF-κB and JNK inhibitor on the clonogenic capacity of Jurkat leukemia cells. PLoS ONE2014; 9(12): e115490
CrossRef
Pubmed
Google scholar
|
[146] |
Rhyasen GW, Bolanos L, Starczynowski DT. Differential IRAK signaling in hematologic malignancies. Exp Hematol2013; 41(12): 1005–1007
CrossRef
Pubmed
Google scholar
|
[147] |
Hamadeh F, MacNamara SP, Aguilera NS, Swerdlow SH, Cook JR. MYD88 L265P mutation analysis helps define nodal lymphoplasmacytic lymphoma. Mod Pathol2015; 28(4): 564–574
CrossRef
Pubmed
Google scholar
|
[148] |
Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, Morra E, Trojani A, Greco A, Arcaini L, Varettoni M, Brown JR, Tai YT, Anderson KC, Munshi NC, Patterson CJ, Manning RJ, Tripsas CK, Lindeman NI, Treon SP. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood2013; 121(11): 2051–2058
CrossRef
Pubmed
Google scholar
|
[149] |
Xu L, Hunter ZR, Yang G, Cao Y, Liu X, Manning R, Tripsas C, Chen J, Patterson CJ, Kluk M, Kanan S, Castillo J, Lindeman N, Treon SP. Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia2014; 28(8): 1698–1704
CrossRef
Pubmed
Google scholar
|
[150] |
Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, Corso A, Orlandi E, Bonfichi M, Gotti M, Pascutto C, Mangiacavalli S, Croci G, Fiaccadori V, Morello L, Guerrera ML, Paulli M, Cazzola M. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood2013; 121(13): 2522–2528
CrossRef
Pubmed
Google scholar
|
[151] |
Jiménez C, Sebastián E, Chillón MC, Giraldo P, Mariano Hernández J, Escalante F, González-López TJ, Aguilera C, de Coca AG, Murillo I, Alcoceba M, Balanzategui A, Sarasquete ME, Corral R, Marín LA, Paiva B, Ocio EM, Gutiérrez NC, González M, San Miguel JF, García-Sanz R. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia2013; 27(8): 1722–1728
CrossRef
Pubmed
Google scholar
|
[152] |
Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med2012; 367(23): 2255–2256, author reply 2256-2257
CrossRef
Pubmed
Google scholar
|
[153] |
Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood2014; 123(18): 2791–2796
CrossRef
Pubmed
Google scholar
|
[154] |
Treon SP, Hunter ZR. A new era for Waldenstrom macroglobulinemia: MYD88 L265P. Blood2013; 121(22): 4434–4436
CrossRef
Pubmed
Google scholar
|
[155] |
Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med2012; 367(9): 826–833
CrossRef
Pubmed
Google scholar
|
[156] |
Ansell SM, Hodge LS, Secreto FJ, Manske M, Braggio E, Price-Troska T, Ziesmer S, Li Y, Johnson SH, Hart SN, Kocher JP, Vasmatzis G, Chanan-Kahn A, Gertz M, Fonseca R, Dogan A, Cerhan JR, Novak AJ. Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J2014; 4(2): e183
CrossRef
Pubmed
Google scholar
|
[157] |
Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res2012; 18(19): 5203–5211
CrossRef
Pubmed
Google scholar
|
[158] |
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, Baumann T, Juan M, López-Guerra M, Colomer D, Tubío JM, López C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernández JM, Puente DA, Freije JM, Velasco G, Gutiérrez-Fernández A, Costa D, Carrió A, Guijarro S, Enjuanes A, Hernández L, Yagüe J, Nicolás P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjosé S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpí JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, López-Guillermo A, Estivill X, Montserrat E, López-Otín C, Campo E. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature2011; 475(7354): 101–105
CrossRef
Pubmed
Google scholar
|
[159] |
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med2011; 365(26): 2497–2506
CrossRef
Pubmed
Google scholar
|
[160] |
Trøen G, Warsame A, Delabie J. CD79B and MYD88 mutations in splenic marginal zone lymphoma. ISRN Oncol2013; 2013: 252318
CrossRef
Pubmed
Google scholar
|
[161] |
Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA, Isaacson PG, de Leval L, Wotherspoon A, Du MQ. BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica2012; 97(4): 595–598
CrossRef
Pubmed
Google scholar
|
[162] |
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM. Oncogenically active MYD88 mutations in human lymphoma. Nature2011; 470(7332): 115–119
CrossRef
Pubmed
Google scholar
|
[163] |
Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai YT, Anderson KC, Hunter ZR, Treon SP. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood2013; 122(7): 1222–1232
CrossRef
Pubmed
Google scholar
|
[164] |
Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Sousa CR. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol2003; 33(4): 827–833
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |