TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma

Daniel Wai-Hung Ho , Alan Ka-Lun Kai , Irene Oi-Lin Ng

Front. Med. ›› 2015, Vol. 9 ›› Issue (3) : 322 -330.

PDF (455KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (3) : 322 -330. DOI: 10.1007/s11684-015-0408-9
RESEARCH ARTICLE
RESEARCH ARTICLE

TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma

Author information +
History +
PDF (455KB)

Abstract

This study systematically evaluates the TCGA whole-transcriptome sequencing data of hepatocellular carcinoma (HCC) by comparing the global gene expression profiles between tumors and their corresponding non-tumorous liver tissue. Based on the differential gene expression analysis, we identified a number of novel dysregulated genes, in addition to those previously reported. Top-listing upregulated (CENPF and FOXM1) and downregulated (CLEC4G, CRHBP, and CLEC1B) genes were successfully validated using qPCR on our cohort of 65 pairs of human HCCs. Further examination for the mechanistic overview by subjecting significantly upregulated and downregulated genes to gene set enrichment analysis showed that different cellular pathways were involved. This study provides useful information on the transcriptomic landscape and molecular mechanism of hepatocarcinogenesis for development of new biomarkers and further in-depth characterization.

Keywords

TCGA / whole-transcriptome sequencing / HCC / liver cancer

Cite this article

Download citation ▾
Daniel Wai-Hung Ho, Alan Ka-Lun Kai, Irene Oi-Lin Ng. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. Front. Med., 2015, 9(3): 322-330 DOI:10.1007/s11684-015-0408-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-Serag HB. Hepatocellular carcinoma. N Engl J Med2011; 365(12): 1118–1127

[2]

Villanueva A, Llovet JM. Liver cancer in 2013: mutational landscape of HCC—the end of the beginning. Nat Rev Clin Oncol2014; 11(2): 73–74

[3]

Jia HL, Ye QH, Qin LX, Budhu A, Forgues M, Chen Y, Liu YK, Sun HC, Wang L, Lu HZ, Shen F, Tang ZY, Wang XW. Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res2007; 13(4): 1133–1139

[4]

Lee JS, Thorgeirsson SS. Comparative and integrative functional genomics of HCC. Oncogene2006; 25(27): 3801–3809

[5]

Marshall A, Lukk M, Kutter C, Davies S, Alexander G, Odom DT. Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker. PLoS ONE2013; 8(3): e59459

[6]

Patil MA, Chua MS, Pan KH, Lin R, Lih CJ, Cheung ST, Ho C, Li R, Fan ST, Cohen SN, Chen X, So S. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene2005; 24(23): 3737–3747

[7]

Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J, Kreipe H, Schlegelberger B, Wilkens L. Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol2008; 21(5): 505–516

[8]

Huang Q, Lin B, Liu H, Ma X, Mo F, Yu W, Li L, Li H, Tian T, Wu D, Shen F, Xing J, Chen ZN. RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PLoS ONE2011; 6(10): e26168

[9]

Lin KT, Shann YJ, Chau GY, Hsu CN, Huang CY. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene2014; 33(39): 4786–4794

[10]

Ho DW, Yang ZF, Yi K, Lam CT, Ng MN, Yu WC, Lau J, Wan T, Wang X, Yan Z, Liu H, Zhang Y, Fan ST. Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS ONE2012; 7(5): e37159

[11]

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics2010; 26(1): 139–140

[12]

Ho DW, Ng IO. uGPA: unified Gene Pathway Analyzer package for high-throughput genome-wide screening data provides mechanistic overview on human diseases. Clin Chim Acta2015; 441: 105–108

[13]

Hong G, Zhang W, Li H, Shen X, Guo Z. Separate enrichment analysis of pathways for up- and downregulated genes. J R Soc Interface2014; 11(92): 20130950

[14]

Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, Eastham JA, Gopalan A, Pienta KJ, Shen MM, Califano A, Abate-Shen C. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell2014; 25(5): 638–651

[15]

Cummings RD, McEver RP. C-type lectins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Eltzler ME. Essentials of Glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2009

[16]

Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol2010; 28(12): 1248–1250

[17]

Bale TL, Giordano FJ, Hickey RP, Huang Y, Nath AK, Peterson KL, Vale WW, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. Proc Natl Acad Sci USA2002; 99(11): 7734–7739

[18]

Graziani G, Tentori L, Portarena I, Barbarino M, Tringali G, Pozzoli G, Navarra P. CRH inhibits cell growth of human endometrial adenocarcinoma cells via CRH-receptor 1-mediated activation of cAMP-PKA pathway. Endocrinology2002; 143(3): 807–813

[19]

Hao Z, Huang Y, Cleman J, Jovin IS, Vale WW, Bale TL, Giordano FJ. Urocortin2 inhibits tumor growth via effects on vascularization and cell proliferation. Proc Natl Acad Sci USA2008; 105(10): 3939–3944

[20]

Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin’s inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin-releasing factor receptor 2. Cancer Invest2008; 26(4): 359–368

[21]

Tezval H, Atschekzei F, Peters I, Waalkes S, Hennenlotter J, Stenzl A, Becker JU, Merseburger AS, Kuczyk MA, Serth J. Reduced mRNA expression level of corticotropin-releasing hormone-binding protein is associated with aggressive human kidney cancer. BMC Cancer2013; 13(1): 199

[22]

Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene1995; 11(2): 211–219

[23]

Lew DJ, Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol1996; 8(6): 795–804

[24]

Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet2002; 360(9340): 1155–1162

[25]

Denison MS, Whitlock JP Jr. Xenobiotic-inducible transcription of cytochrome P450 genes. J Biol Chem1995; 270(31): 18175–18178

[26]

Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol2001; 14(6): 611–650

[27]

Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, Huang RP. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta2014; 1845(2): 182–201

[28]

Lacy P, Stow JL. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood2011; 118(1): 9–18

[29]

Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol2013; 14(6): e218–e228

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (455KB)

2873

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/