Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications
Yi Cao
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
environmental pollution / DNA methylation / cancer / biomarker / diagnosis / therapy / prevention
[1] |
Chen Z, Wang JN, Ma GX, Zhang YS. China tackles the health effects of air pollution. Lancet2013; 382(9909): 1959–1960
CrossRef
Pubmed
Google scholar
|
[2] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell2011; 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[3] |
Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer2011; 11(10): 726–734
CrossRef
Pubmed
Google scholar
|
[4] |
Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev2012; 22(1): 50–55
CrossRef
Pubmed
Google scholar
|
[5] |
You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell2012; 22(1): 9–20
CrossRef
Pubmed
Google scholar
|
[6] |
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell2012; 150(1): 12–27
CrossRef
Pubmed
Google scholar
|
[7] |
Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer2004; 4(2): 143–153
CrossRef
Pubmed
Google scholar
|
[8] |
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev2009; 23(7): 781–783
CrossRef
Pubmed
Google scholar
|
[9] |
Inst Health Metrics & Evaluation, Global Burden of Disease Cause Patterns 2010, available at: go.nature.com/brc4nw
|
[10] |
Deweerdt S. Aetiology: crucial clues. Nature2014; 513(7517): S12–S13
CrossRef
Pubmed
Google scholar
|
[11] |
Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K. International Agency for Research on Cancer Monograph Working Group IARC: the carcinogenicity of outdoor air pollution. Lancet Oncol2013; 14(13): 1262–1263
CrossRef
Pubmed
Google scholar
|
[12] |
Watson T. Environment: breathing trouble. Nature2014; 513(7517): S14–S15
CrossRef
Pubmed
Google scholar
|
[13] |
Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJ. Rapid health transition in China, 1990‒2010: findings from the Global Burden of Disease Study 2010. Lancet2013; 381(9882): 1987–2015
CrossRef
Pubmed
Google scholar
|
[14] |
Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol2013; 14(9): 813–822
CrossRef
Pubmed
Google scholar
|
[15] |
Subbaraman N. Public health:a burning issue. Nature2014; 513: S16–S17
CrossRef
Pubmed
Google scholar
|
[16] |
Cao Y, Gao H. Prevalence and causes of air pollution and lung cancer in Xuanwei City and Fuyuan County, Yunnan Province, China. Front Med2012; 6(2): 217–220
CrossRef
Pubmed
Google scholar
|
[17] |
Xiao Y, Shao Y, Yu X, Zhou G. The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China. Front Med2012; 6(4): 388–394
CrossRef
Pubmed
Google scholar
|
[18] |
Mumford JL, He XZ, Chapman RS, Cao SR, Harris DB, Li XM, Xian YL, Jiang WZ, Xu CW, Chuang JC, Wilson WE, Cooke M, Lung cancer and indoor air pollution in Xuan Wei, China. Science1987; 235(4785): 217–220
CrossRef
Pubmed
Google scholar
|
[19] |
Oey H, Whitelaw E. On the meaning of the word ”epimutation”. Trends Genet2014; 30(12): 519–520
CrossRef
Pubmed
Google scholar
|
[20] |
Sinčić N, Herceg Z. DNA methylation and cancer: ghosts and angels above the genes. Curr Opin Oncol2011; 23(1): 69–76
CrossRef
Pubmed
Google scholar
|
[21] |
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood2009; 113(25): 6411–6418
CrossRef
Pubmed
Google scholar
|
[22] |
Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ, Ralser M, Brun S, Bunt J, Jäger N, Kleinheinz K, Erkek S, Weber UD, Bartholomae CC, von Kalle C, Lawerenz C, Eils J, Koster J, Versteeg R, Milde T, Witt O, Schmidt S, Wolf S, Pietsch T, Rutkowski S, Scheurlen W, Taylor MD, Brors B, Felsberg J, Reifenberger G, Borkhardt A, Lehrach H, Wechsler-Reya RJ, Eils R, Yaspo ML, Landgraf P, Korshunov A, Zapatka M, Radlwimmer B, Pfister SM, Lichter P. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature2014; 510(7506): 537–541
CrossRef
Pubmed
Google scholar
|
[23] |
James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, Wilson EM, Karpf AR. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics2013; 8(8): 849–863
CrossRef
Pubmed
Google scholar
|
[24] |
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA2000; 97(10): 5237–5242
CrossRef
Pubmed
Google scholar
|
[25] |
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature2009; 462(7271): 315–322
CrossRef
Pubmed
Google scholar
|
[26] |
Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res2013; 73(2): 473–477
CrossRef
Pubmed
Google scholar
|
[27] |
Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene2012; 31(13): 1609–1622
CrossRef
Pubmed
Google scholar
|
[28] |
Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature2000; 405(6785): 482–485
CrossRef
Pubmed
Google scholar
|
[29] |
Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell2005; 8(2): 89–91
CrossRef
Pubmed
Google scholar
|
[30] |
Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, Martínez-Trillos A, Castellano G, Brun-Heath I, Pinyol M, Barberán-Soler S, Papasaikas P, Jares P, Beà S, Rico D, Ecker S, Rubio M, Royo R, Ho V, Klotzle B, Hernández L, Conde L, López-Guerra M, Colomer D, Villamor N, Aymerich M, Rozman M, Bayes M, Gut M, Gelpí JL, Orozco M, Fan JB, Quesada V, Puente XS, Pisano DG, Valencia A, López-Guillermo A, Gut I, López-Otín C, Campo E, Martín-Subero JI. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet2012; 44(11): 1236–1242
CrossRef
Pubmed
Google scholar
|
[31] |
Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature2010; 466(7303): 253–257
CrossRef
Pubmed
Google scholar
|
[32] |
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature2009; 462(7271): 315–322
CrossRef
Pubmed
Google scholar
|
[33] |
Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell2014; 26(4): 577–590
CrossRef
Pubmed
Google scholar
|
[34] |
Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP. Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet2009; 41: 178–186
CrossRef
Pubmed
Google scholar
|
[35] |
Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett2003; 192(1): 75–82
CrossRef
Pubmed
Google scholar
|
[36] |
Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet2011; 43(4): 309–315
CrossRef
Pubmed
Google scholar
|
[37] |
Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res2013; 23(3): 555–567
CrossRef
Pubmed
Google scholar
|
[38] |
Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature2012; 488(7412): 504–507
CrossRef
Pubmed
Google scholar
|
[39] |
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts<?Pub Caret1?> SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortés ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature2013; 499(7457): 214–218
CrossRef
Pubmed
Google scholar
|
[40] |
Polak P, Karlić R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, Vlahoviček K, Stamatoyannopoulos JA, Sunyaev SR. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature2015; 518(7539): 360–364
CrossRef
Pubmed
Google scholar
|
[41] |
Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5’UTR. Cancer Cell2011; 20(2): 200–213
CrossRef
Pubmed
Google scholar
|
[42] |
Guerrero-Presto R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, Myers JN, Yegnasubramanian S, Hadar T, Noordhuis MG, Zizkova V, Fertig E, Agrawal N, Westra W, Koch W, Califano J, Velculescu VE, Sidransky D. Key tumor suppressor genes inactivated by “greater promoter’ methylation and somatic mutations in head and neck cancer. Epigenetics2014; 9: 1031–1046
CrossRef
Pubmed
Google scholar
|
[43] |
Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science2015; 347(6217): 78–81
CrossRef
Pubmed
Google scholar
|
[44] |
Roadmap Epigenomics Consortium; Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M. Integrative analysis of 111 reference human epigenomes. Nature2015; 518(7539): 317–330
CrossRef
Pubmed
Google scholar
|
[45] |
Wu J, Wang SH, Potter D, Liu JC, Smith LT, Wu YZ, Huang TH, Plass C. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics2007; 8(1): 131
CrossRef
Pubmed
Google scholar
|
[46] |
Bannister AJ, Kouzarides T. Reversing histone methylation. Nature2005; 436(7054): 1103–1106
CrossRef
Pubmed
Google scholar
|
[47] |
Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics2011; 6(3): 355–367
CrossRef
Pubmed
Google scholar
|
[48] |
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci2006; 31(2): 89–97
CrossRef
Pubmed
Google scholar
|
[49] |
Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell2011; 146(6): 866–872
CrossRef
Pubmed
Google scholar
|
[50] |
Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril2007; 87(1): 24–32
CrossRef
Pubmed
Google scholar
|
[51] |
Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol2009; 1(2): 82–92
CrossRef
Pubmed
Google scholar
|
[52] |
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature2012; 483(7390): 479–483
CrossRef
Pubmed
Google scholar
|
[53] |
Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr2009; 21(2): 243–251
CrossRef
Pubmed
Google scholar
|
[54] |
Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, Zeng X, Li D, Wang Q, Xiao Y, Liu C, Xiao Q, Chen L, Zhu X, Xing X, Li Z, Zhang S, Zhang Z, Ma L, Wang E, Zhuang Z, Zheng Y, Chen W. CpG site-specific hypermethylation of p16INK4α in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biomarkers Prev2012; 21(1): 182–190
CrossRef
Pubmed
Google scholar
|
[55] |
Herbstman JB, Tang D, Zhu D, Qu L, Sjödin A, Li Z, Camann D, Perera FP. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect2012; 120(5): 733–738
CrossRef
Pubmed
Google scholar
|
[56] |
Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, Ho SM. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE2009; 4(2): e4488
CrossRef
Pubmed
Google scholar
|
[57] |
Tang WY, Levin L, Talaska G, Cheung YY, Herbstman J, Tang D, Miller RL, Perera F, Ho SM. Maternal exposure to polycyclic aromatic hydrocarbons and 5′-CpG methylation of interferon-γ in cord white blood cells. Environ Health Perspect2012; 120(8): 1195–1200
CrossRef
Pubmed
Google scholar
|
[58] |
Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R, Flanagan JM, Vineis P. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology2013; 24(5): 712–716
CrossRef
Pubmed
Google scholar
|
[59] |
Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol2014; 163: 37–46
CrossRef
Pubmed
Google scholar
|
[60] |
Huang H, Hu G, Cai J, Xia B, Liu J, Li X, Gao W, Zhang J, Liu Y, Zhuang Z. Role of poly(ADP-ribose) glycohydrolase silencing in DNA hypomethylation induced by benzo(a)pyrene. Biochem Biophys Res Commun2014; 452(3): 708–714
CrossRef
Pubmed
Google scholar
|
[61] |
Zeng JL, Zhang B, Yang P, Xiao YM, Wei Q, Wang Q, Li DC, Xing XM, Chen LP, Chen W. A genome-wide screen for promoter-specific sites of differential DNA methylation during human cell malignant transformation in vitro. Chin J Prev Med (Zhonghua Yu Fang Yi Xue Za Zhi)2011; 45(5): 404–409 (in Chinese)
Pubmed
|
[62] |
Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res2008; 68(21): 9005–9014
CrossRef
Pubmed
Google scholar
|
[63] |
Sadikovic B, Andrews J, Rodenhiser DI. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells. Toxicol Appl Pharmacol2007; 225(3): 300–309
CrossRef
Pubmed
Google scholar
|
[64] |
Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, Davis S, Zhang Y, Hussain M, Xi S, Rao M, Meltzer PA, Schrump DS. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene2010; 29(25): 3650–3664
CrossRef
Pubmed
Google scholar
|
[65] |
Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect2009; 117(2): 217–222
CrossRef
Pubmed
Google scholar
|
[66] |
Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med2009; 179(7): 572–578
CrossRef
Pubmed
Google scholar
|
[67] |
Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics2011; 6(7): 804–819
CrossRef
Pubmed
Google scholar
|
[68] |
Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA. Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis2002; 23(2): 335–339
CrossRef
Pubmed
Google scholar
|
[69] |
Hou L, Zhang X, Zheng Y, Wang S, Dou C, Guo L, Byun HM, Motta V, McCracken J, Díaz A, Kang CM, Koutrakis P, Bertazzi PA, Li J, Schwartz J, Baccarelli AA. Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ Mol Mutagen2014; 55(3): 256–265
CrossRef
Pubmed
Google scholar
|
[70] |
Carmona JJ, Sofer T, Hutchinson J, Cantone L, Coull B, Maity A, Vokonas P, Lin X, Schwartz J, Baccarelli AA. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ Health2014; 13(1): 94
CrossRef
Pubmed
Google scholar
|
[71] |
Lepeule J, Bind MA, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD. Epigenetic influences on associations between air pollutants and lung function in elderly men: the normative aging study. Environ Health Perspect2014; 122(6): 566–572
Pubmed
|
[72] |
Bind MA, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, Tarantini L, Vokonas PS, Koutrakis P, Schwartz J. Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics2014; 9(3): 448–458
CrossRef
Pubmed
Google scholar
|
[73] |
De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot TS, Schoeters G. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int2013; 59: 418–424
CrossRef
Pubmed
Google scholar
|
[74] |
Sofer T, Baccarelli A, Cantone L, Coull B, Maity A, Lin X, Schwartz J. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics2013; 5(2): 147–154
CrossRef
Pubmed
Google scholar
|
[75] |
Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, Schwartz J. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology2012; 23(2): 332–340
CrossRef
Pubmed
Google scholar
|
[76] |
Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect2011; 119(7): 977–982
CrossRef
Pubmed
Google scholar
|
[77] |
Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D. DNA methylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci2006; 89(2): 431–437
CrossRef
Pubmed
Google scholar
|
[78] |
Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP. Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol2005; 206(3): 288–298
CrossRef
Pubmed
Google scholar
|
[79] |
Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol2009; 241(2): 221–229
CrossRef
Pubmed
Google scholar
|
[80] |
Tabish AM, Poels K, Hoet P, Godderis L. Epigenetic factors in cancer risk: effect of chemical carcinogens on global DNA methylation pattern in human TK6 cells. PLoS ONE2012; 7(4): e34674
CrossRef
Pubmed
Google scholar
|
[81] |
Liu Q, Yang L, Gong C, Tao G, Huang H, Liu J, Zhang H, Wu D, Xia B, Hu G, Wang K, Zhuang Z. Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicol Lett2011; 205(3): 235–240
CrossRef
Pubmed
Google scholar
|
[82] |
Bastide K, Guilly MN, Bernaudin JF, Joubert C, Lectard B, Levalois C, Malfoy B, Chevillard S. Molecular analysis of the Ink4a/Rb1-Arf/Tp53 pathways in radon-induced rat lung tumors. Lung Cancer2009; 63(3): 348–353
CrossRef
Pubmed
Google scholar
|
[83] |
Su S, Jin Y, Zhang W, Yang L, Shen Y, Cao Y, Tong J. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health2006; 48(4): 261–266
CrossRef
Pubmed
Google scholar
|
[84] |
Scott BR, Belinsky SA, Leng S, Lin Y, Wilder JA, Damiani LA. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose Response2009; 7(2): 104–131
Pubmed
|
[85] |
Andujar P, Wang J, Descatha A, Galateau-Sallé F, Abd-Alsamad I, Billon-Galland MA, Blons H, Clin B, Danel C, Housset B, Laurent-Puig P, Le Pimpec-Barthes F, Letourneux M, Monnet I, Régnard JF, Renier A, Zucman-Rossi J, Pairon JC, Jaurand MC. p16INK4A inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer2010; 67(1): 23–30
CrossRef
Pubmed
Google scholar
|
[86] |
Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR, Karagas MR, Wrensch MR, Yeh RF, Nelson HH, Wiemels JL, Zheng S, Wiencke JK, Bueno R, Sugarbaker DJ, Kelsey KT. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res2009; 69(1): 227–234
CrossRef
Pubmed
Google scholar
|
[87] |
Christensen BC, Godleski JJ, Marsit CJ, Houseman EA, Lopez-Fagundo CY, Longacker JL, Bueno R, Sugarbaker DJ, Nelson HH, Kelsey KT. Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis2008; 29(8): 1555–1559
CrossRef
Pubmed
Google scholar
|
[88] |
Sha Y, Zhou W, Yang Z, Zhu X, Xiang Y, Li T, Zhu D, Yang X. Changes in poly(ADP-ribosyl)ation patterns in workers exposed to BTX. PLoS ONE2014; 9(9): e106146
CrossRef
Pubmed
Google scholar
|
[89] |
Yang J, Bai W, Niu P, Tian L, Gao A. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data. Exp Mol Pathol2014; 96(3): 346–353
CrossRef
Pubmed
Google scholar
|
[90] |
Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res2007; 67(3): 876–880
CrossRef
Pubmed
Google scholar
|
[91] |
Chappell G, Kobets T, O’Brien B, Tretyakova N, Sangaraju D, Kosyk O, Sexton KG, Bodnar W, Pogribny IP, Rusyn I. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice. Toxicol Sci2014; 142(2): 375–384
CrossRef
Pubmed
Google scholar
|
[92] |
Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Swenberg JA, Beland FA, Pardo-Manuel Devillena F, Rusyn I, Pogribny IP. Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci2011; 122(2): 448–456
CrossRef
Pubmed
Google scholar
|
[93] |
Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Tryndyak V, Latendresse JR, Swenberg JA, Beland FA, Pogribny IP, Rusyn I. Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. Environ Health Perspect2011; 119(5): 635–640
CrossRef
Pubmed
Google scholar
|
[94] |
Zhuang SM, Schippert A, Haugen-Strano A, Wiseman RW, Söderkvist P. Inactivations of p16INK4a-α, p16INK4a-β and p15INK4b genes in 2′,3′-dideoxycytidine- and 1,3-butadiene-induced murine lymphomas. Oncogene1998; 16(6): 803–808
CrossRef
Pubmed
Google scholar
|
[95] |
Mathison BH, Frame SR, Bogdanffy MS. DNA methylation, cell proliferation, and histopathology in rats following repeated inhalation exposure to dimethyl sulfate. Inhal Toxicol2004; 16(9): 581–592
CrossRef
Pubmed
Google scholar
|
[96] |
Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect2008; 116(11): 1547–1552
CrossRef
Pubmed
Google scholar
|
[97] |
Kostka G, Urbanek-Olejnik K, Liszewska M, Winczura A. The effect of acute dichlorodiphenyltrichloroethane exposure on hypermethylation status and down-regulation of p53 and p16(INK4a) genes in rat liver. Environ Toxicol 2014 Nov 20. [Epub ahead of print]
CrossRef
Google scholar
|
[98] |
Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, Komatsu Y, Maita K, Harada T. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci2009; 34(5): 469–482
CrossRef
Pubmed
Google scholar
|
[99] |
Li C, Yang X, Xu M, Zhang J, Sun N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol (Phila)2013; 51(4): 225–229
CrossRef
Pubmed
Google scholar
|
[100] |
Li YY, Chen T, Wan Y, Xu SQ. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol2012; 27(8): 495–502
CrossRef
Pubmed
Google scholar
|
[101] |
Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod2012; 27(5): 1401–1410
CrossRef
Pubmed
Google scholar
|
[102] |
Li C, Xu M, Wang S, Yang X, Zhou S, Zhang J, Liu Q, Sun Y. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett2011; 203(1): 48–53
CrossRef
Pubmed
Google scholar
|
[103] |
Lou J, Wang Y, Yao C, Jin L, Wang X, Xiao Y, Wu N, Song P, Song Y, Tan Y, Gao M, Liu K, Zhang X. Role of DNA methylation in cell cycle arrest induced by Cr (VI) in two cell lines. PLoS ONE2013; 8(8): e71031
CrossRef
Pubmed
Google scholar
|
[104] |
Wang TC, Song YS, Wang H, Zhang J, Yu SF, Gu YE, Chen T, Wang Y, Shen HQ, Jia G. Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater2012; 213-214: 440–446
CrossRef
Pubmed
Google scholar
|
[105] |
Proctor DM, Suh M, Campleman SL, Thompson CM. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology2014; 325: 160–179
CrossRef
Pubmed
Google scholar
|
[106] |
Ali AH, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog2011; 50(2): 89–99
CrossRef
Pubmed
Google scholar
|
[107] |
Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect2014; 122(9): 946–954
Pubmed
|
[108] |
Weng S, Wang W, Li Y, Li H, Lu X, Xiao S, Wu T, Xie M, Zhang W. Continuous cadmium exposure from weaning to maturity induces downregulation of ovarian follicle development-related SCF/c-kit gene expression and the corresponding changes of DNA methylation/microRNA pattern. Toxicol Lett2014; 225(3): 367–377
CrossRef
Pubmed
Google scholar
|
[109] |
Pierron F, Baillon L, Sow M, Gotreau S, Gonzalez P. Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel. Environ Sci Technol2014; 48(1): 797–803
CrossRef
Pubmed
Google scholar
|
[110] |
Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics2014; 9(2): 212–221
CrossRef
Pubmed
Google scholar
|
[111] |
Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat Res2013; 757(2): 125–131
CrossRef
Pubmed
Google scholar
|
[112] |
Turdi S, Sun W, Tan Y, Yang X, Cai L, Ren J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin Exp Pharmacol Physiol2013; 40(10): 706–712
Pubmed
|
[113] |
Zhang C, Liang Y, Lei L, Zhu G, Chen X, Jin T, Wu Q. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol2013; 271(1): 78–85
CrossRef
Pubmed
Google scholar
|
[114] |
Kippler M, Engström K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, Raqib R, Vahter M, Broberg K. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics2013; 8(5): 494–503
CrossRef
Pubmed
Google scholar
|
[115] |
Yanez Barrientos E, Wrobel K, Lopez Torres A, Gutiérrez Corona F, Wrobel K. Application of reversed-phase high-performance liquid chromatography with fluorimetric detection for simultaneous assessment of global DNA and total RNA methylation in Lepidium sativum: effect of plant exposure to Cd(II) and Se(IV). Anal Bioanal Chem2013; 405(7): 2397–2404
CrossRef
Pubmed
Google scholar
|
[116] |
Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett2008; 179(1): 43–47
CrossRef
Pubmed
Google scholar
|
[117] |
Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res2003; 286(2): 355–365
CrossRef
Pubmed
Google scholar
|
[118] |
Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect2007; 115(10): 1454–1459
Pubmed
|
[119] |
Zhou ZH, Lei YX, Wang CX. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci2012; 125(2): 412–417
CrossRef
Pubmed
Google scholar
|
[120] |
Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W, Yang J, Pang Y, Li W, Lu J, Fu J, Chen J, Lin Z, Chen W, Zhuang Z. Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis2008; 29(6): 1267–1275
CrossRef
Pubmed
Google scholar
|
[121] |
Yang J, Chen W, Li X, Sun J, Guo Q, Wang Z. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J Occup Environ Med2014; 56(5): 489–492
CrossRef
Pubmed
Google scholar
|
[122] |
Zhang J, Zhou Y, Wu YJ, Li MJ, Wang RJ, Huang SQ, Gao RR, Ma L, Shi HJ, Zhang J. Hyper-methylated miR-203 dysregulates ABL1 and contributes to the nickel-induced tumorigenesis. Toxicol Lett2013; 223(1): 42–51
CrossRef
Pubmed
Google scholar
|
[123] |
Tajuddin SM, Amaral AF, Fernández AF, Rodríguez-Rodero S, Rodríguez RM, Moore LE, Tardón A, Carrato A, García-Closas M, Silverman DT, Jackson BP, García-Closas R, Cook AL, Cantor KP, Chanock S, Kogevinas M, Rothman N, Real FX, Fraga MF, Malats N; Spanish Bladder Cancer/EPICURO Study Investigators. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect2013; 121(6): 650–656
Pubmed
|
[124] |
Wu CH, Tang SC, Wang PH, Lee H, Ko JL. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem2012; 287(30): 25292–25302
CrossRef
Pubmed
Google scholar
|
[125] |
Zhang J, Zhang J, Li M, Wu Y, Fan Y, Zhou Y, Tan L, Shao Z, Shi H. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci2011; 24(2): 163–171
Pubmed
|
[126] |
Coulter JB, O’Driscoll CM, Bressler JP. Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase. J Biol Chem2013; 288(40): 28792–28800
CrossRef
Pubmed
Google scholar
|
[127] |
Zhang Y, Yang R, Burwinkel B, Breitling LP, Brenner H. F2RL3 methylation as a biomarker of current and lifetime smoking exposures. Environ Health Perspect2014; 122(2): 131–137
Pubmed
|
[128] |
Lima SC, Hernandez-Vargas H, Herceg Z. Epigenetic signatures in cancer: Implications for the control of cancer in the clinic. Curr Opin Mol Ther2010; 12(3): 316–324
Pubmed
|
[129] |
Singh V, Sharma P, Capalash N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets2013; 13(4): 379–399
CrossRef
Pubmed
Google scholar
|
[130] |
Vizoso M, Esteller M. German-Catalan workshop on epigenetics and cancer. Epigenetics2013; 8(9): 998–1003
CrossRef
Pubmed
Google scholar
|
[131] |
Vaissière T, Hung RJ, Zaridze D, Moukeria A, Cuenin C, Fasolo V, Ferro G, Paliwal A, Hainaut P, Brennan P, Tost J, Boffetta P, Herceg Z. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res2009; 69(1): 243–252
CrossRef
Pubmed
Google scholar
|
[132] |
Belinsky SA, Grimes MJ, Casas E, Stidley CA, Franklin WA, Bocklage TJ, Johnson DH, Schiller JH. Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. Br J Cancer2007; 96(8): 1278–1283
CrossRef
Pubmed
Google scholar
|
[133] |
Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, Belvisi MG, Brown R, Vineis P, Flanagan JM. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet2013; 22(5): 843–851
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |