Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review

Amma Owusu-Ansah , Sung Hee Choi , Agne Petrosiute , John J. Letterio , Alex Yee-Chen Huang

Front. Med. ›› 2015, Vol. 9 ›› Issue (1) : 46 -56.

PDF (631KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (1) : 46 -56. DOI: 10.1007/s11684-015-0375-1
REVIEW
REVIEW

Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review

Author information +
History +
PDF (631KB)

Abstract

Sickle cell disease (SCD) is an inherited disorder of hemoglobin in which the abnormal hemoglobin S polymerizes when deoxygenated. This polymerization of hemoglobin S not only results in hemolysis and vaso-occlusion but also precipitates inflammation, oxidative stress and chronic organ dysfunction. Oxidative stress is increasingly recognized as an important intermediate in these pathophysiological processes and is therefore an important target for therapeutic intervention. The transcription factor nuclear erythroid derived- 2 related factor 2 (Nrf2) controls the expression of anti-oxidant enzymes and is emerging as a protein whose function can be exploited with therapeutic intent. This review article is focused on triterpenoids that activate Nrf2, and their potential for reducing oxidative stress in SCD as an approach to prevent organ dysfunction associated with this disease. A brief overview of oxidative stress in the clinical context of SCD is accompanied by a discussion of several pathophysiological mechanisms contributing to oxidative stress. Finally, these mechanisms are then related to current management strategies in SCD that are either utilized currently or under evaluation. The article concludes with a perspective on the potential of the various therapeutic interventions to reduce oxidative stress and morbidity associated with SCD.

Keywords

oxidative stress / Nrf2 / triterpenoids / sickle cell disease / vaso-occlusion / CDDO-Me

Cite this article

Download citation ▾
Amma Owusu-Ansah, Sung Hee Choi, Agne Petrosiute, John J. Letterio, Alex Yee-Chen Huang. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review. Front. Med., 2015, 9(1): 46-56 DOI:10.1007/s11684-015-0375-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol2007; 34(9): 926–932

[2]

Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet2010; 376(9757): 2018–2031

[3]

Steinberg MH. Pathophysiologically based drug treatment of sickle cell disease. Trends Pharmacol Sci2006; 27(4): 204–210

[4]

Nur E, Biemond BJ, Otten HM, Brandjes DP, Schnog JJ; CURAMA Study Group. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol2011; 86(6): 484–489

[5]

Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med1994; 330(23): 1639–1644

[6]

Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR. Pain in sickle cell disease. Rates and risk factors. N Engl J Med1991; 325(1): 11–16

[7]

Watson J, Starman AW, Bilello FP. The significance of the paucity of sickle cells in newborn Negro infants. Am J Med Sci1948; 215(4): 419–423

[8]

Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full? Blood2014; 123(4): 481–485

[9]

Sankaran VG, Orkin SH . The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med2013; 3(1): a011643

[10]

Chaves MA, Leonart MS, do Nascimento AJ. Oxidative process in erythrocytes of individuals with hemoglobin S. Hematology2008; 13(3): 187–192

[11]

Silva DGH, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med2013; 65(0): 1101–1109

[12]

Gizi A, Papassotiriou I, Apostolakou F, Lazaropoulou C, Papastamataki M, Kanavaki I, Kalotychou V, Goussetis E, Kattamis A, Rombos I, Kanavakis E. Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis2011; 46(3): 220–225

[13]

Liby K, Hock T, Yore MM, Suh N, Place AE, Risingsong R, Williams CR, Royce DB, Honda T, Honda Y, Gribble GW, Hill-Kapturczak N, Agarwal A, Sporn MB. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res2005; 65(11): 4789–4798

[14]

Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med2008; 74(13): 1526–1539

[15]

Yates MS, Kensler TW. Chemopreventive promise of targeting the Nrf2 pathway. Drug News Perspect2007; 20(2): 109–117

[16]

Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA. Nrf2, a multi-organ protector? FASEB J2005; 19(9): 1061–1066

[17]

Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood2010; 116(20): 4338–4348

[18]

Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells2003; 8(4): 379–391

[19]

Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett2005; 579(14): 3029–3036

[20]

Dröge W. Free radicals in the physiological control of cell function. Physiol Rev2002; 82(1): 47–95

[21]

Junqueira VBC, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP. Aging and oxidative stress. Mol Aspects Med2004; 25(1-2): 5–16

[22]

Akohoue SA, Shankar S, Milne GL, Morrow J, Chen KY, Ajayi WU, Buchowski MS. Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr Res2007; 61(2): 233–238

[23]

Manfredini V, Lazzaretti LL, Griebeler IH, Santin AP, Brandão VD, Wagner S, Castro SM, Peralba MdoC, Benfato MS. Blood antioxidant parameters in sickle cell anemia patients in steady state. J Natl Med Assoc2008; 100(8): 897–902

[24]

Klings ES, Christman BW, McClung J, Stucchi AF, McMahon L, Brauer M, Farber HW. Increased F2 isoprostanes in the acute chest syndrome of sickle cell disease as a marker of oxidative stress. Am J Respir Crit Care Med2001; 164(7): 1248–1252

[25]

Nath KA, Grande JP, Haggard JJ, Croatt AJ, Katusic ZS, Solovey A, Hebbel RP. Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol2001; 158(3): 893–903

[26]

Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, Gladwin MT. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med2002; 8(12): 1383–1389

[27]

Morris CR. Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematology Am Soc Hematol Educ Program 2008; 2008 (1): 177–185

[28]

Schnog JB, Teerlink T, van der Dijs FP, Duits AJ, Muskiet FA; CURAMA Study Group. Plasma levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell disease. Ann Hematol2005; 84(5): 282–286

[29]

Wood KC, Hebbel RP, Lefer DJ, Granger DN. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic Biol Med2006; 40(8): 1443–1453

[30]

Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. Red blood cells induce hypoxic lung inflammation. Blood2008; 111(10): 5205–5214

[31]

Brugnara C. Erythrocyte dehydration in pathophysiology and treatment of sickle cell disease. Curr Opin Hematol1995; 2(2): 132–138

[32]

Hofstra TC, Kalra VK, Meiselman HJ, Coates TD. Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood1996; 87(10): 4440–4447

[33]

Vichinsky E. Emerging ‘A’ therapies in hemoglobinopathies: agonists, antagonists, antioxidants, and arginine. Hematology Am Soc Hematol Educ Program 2012; 2012 (1): 271–275

[34]

Nur E, Brandjes DP, Teerlink T, Otten HM, Oude Elferink RP, Muskiet F, Evers LM, ten Cate H, Biemond BJ, Duits AJ, Schnog JJ; CURAMA study group.N-acetylcysteine reduces oxidative stress in sickle cell patients. Ann Hematol2012; 91(7): 1097–1105

[35]

Zimmerman SA, Schultz WH, Davis JS, Pickens CV, Mortier NA, Howard TA, Ware RE. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood2004; 103(6): 2039–2045

[36]

Silva DG, Belini Junior E, Torres LS, Ricci Júnior O, Lobo CC, Bonini-Domingos CR, de Almeida EA. Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia. Blood Cells Mol Dis2011; 47(1): 23–28

[37]

Torres Lde S, da Silva DG, Belini Junior E, de Almeida EA, Lobo CL, Cançado RD, Ruiz MA, Bonini-Domingos CR. The influence of hydroxyurea on oxidative stress in sickle cell anemia. Rev Bras Hematol Hemoter2012; 34(6): 421–425

[38]

Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, Orringer E, Bellevue R, Olivieri N, Eckman J, Varma M, Ramirez G, Adler B, Smith W, Carlos T, Ataga K, DeCastro L, Bigelow C, Saunthararajah Y, Telfer M, Vichinsky E, Claster S, Shurin S, Bridges K, Waclawiw M, Bonds D, Terrin M. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA2003; 289(13): 1645–1651

[39]

Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med1995; 332(20): 1317–1322

[40]

Pace BS, Zein S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn2006; 235(7): 1727–1737

[41]

Fathallah H, Atweh GF . Induction of fetal hemoglobin in the treatment of sickle cell disease. Hematology Am Soc Hematol Educ Program2006: 58–62

[42]

DeSimone J, Heller P, Hall L, Zwiers D. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci USA1982; 79(14): 4428–4431

[43]

Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, Gavazova S, Chen YH, Hoffman R, DeSimone J. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood2003; 102(12): 3865–3870

[44]

Fard AD, Hosseini SA, Shahjahani M, Salari F, Jaseb K. Evaluation of novel fetal hemoglobin inducer drugs in treatment of beta-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res2013; 7(3): 47–54

[45]

List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, Reeder C, Wride K, Patin J, Schmidt M, Zeldis J, Knight R; Myelodysplastic Syndrome-003 Study Investigators. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med2006; 355(14): 1456–1465

[46]

Moutouh-de Parseval LA, Verhelle D, Glezer E, Jensen-Pergakes K, Ferguson GD, Corral LG, Morris CL, Muller G, Brady H, Chan K. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J Clin Invest2008; 118(1): 248–258

[47]

Rodgers GP, Dover GJ, Noguchi CT, Schechter AN, Nienhuis AW. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea. N Engl J Med1990; 322(15): 1037–1045

[48]

King SB. Nitric oxide production from hydroxyurea. Free Radic Biol Med2004; 37(6): 737–744

[49]

Gladwin MT, Shelhamer JH, Ognibene FP, Pease-Fye ME, Nichols JS, Link B, Patel DB, Jankowski MA, Pannell LK, Schechter AN, Rodgers GP. Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br J Haematol2002; 116(2): 436–444

[50]

Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, Hagar RW, Howard T, Nuss R, Okam MM, Tremonti CK, Berman B, Villella A, Krishnamurti L, Lanzkron S, Castro O, Gordeuk VR, Coles WA, Peters-Lawrence M, Nichols J, Hall MK, Hildesheim M, Blackwelder WC, Baldassarre J, Casella JF; DeNOVO Investigators. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA2011; 305(9): 893–902

[51]

Morris CR, Kuypers FA, Lavrisha L, Ansari M, Sweeters N, Stewart M, Gildengorin G, Neumayr L, Vichinsky EP. A randomized, placebo-controlled trial of arginine therapy for the treatment of children with sickle cell disease hospitalized with vaso-occlusive pain episodes. Haematologica2013; 98(9): 1375–1382

[52]

Pace BS, Shartava A, Pack-Mabien A, Mulekar M, Ardia A, Goodman SR. Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol2003; 73(1): 26–32

[53]

Field JJ, Nathan DG, Linden J. Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol2011; 140(2): 177–183

[54]

Morris CR, Suh JH, Hagar W, Larkin S, Bland DA, Steinberg MH, Vichinsky EP, Shigenaga M, Ames B, Kuypers FA, Klings ES. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood2008; 111(1): 402–410

[55]

Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev2012; 64(4): 972–1003

[56]

Sporn MB, Liby KT, Yore MM, Fu L, Lopchuk JM, Gribble GW. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. J Nat Prod2011; 74(3): 537–545

[57]

Suh N, Wang Y, Honda T, Gribble GW, Dmitrovsky E, Hickey WF, Maue RA, Place AE, Porter DM, Spinella MJ, Williams CR, Wu G, Dannenberg AJ, Flanders KC, Letterio JJ, Mangelsdorf DJ, Nathan CF, Nguyen L, Porter WW, Ren RF, Roberts AB, Roche NS, Subbaramaiah K, Sporn MB. A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res1999; 59(2): 336–341

[58]

Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA2005; 102(12): 4584–4589

[59]

Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, Callahan JF, Carr R, Concha N, Kerns JK, Qi H, Sweitzer T, Ward P, Davies TG. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE2014; 9(6): e98896

[60]

Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, Kensler TW. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis2009; 30(6): 1024–1031

[61]

Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, Sporn MB, Yamamoto M, Kensler TW, Biswal S. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun2006; 351(4): 883–889

[62]

Thimmulappa RK, Fuchs RJ, Malhotra D, Scollick C, Traore K, Bream JH, Trush MA, Liby KT, Sporn MB, Kensler TW, Biswal S. Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-Me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid Redox Signal2007; 9(11): 1963–1970

[63]

Heiss EH, Schachner D, Werner ER, Dirsch VM. Active NF-E2-related factor (Nrf2) contributes to keep endothelial NO synthase (eNOS) in the coupled state: role of reactive oxygen species (ROS), eNOS, and heme oxygenase (HO-1) levels. J Biol Chem2009; 284(46): 31579–31586

[64]

Cho HY, Reddy SP, Yamamoto M, Kleeberger SR. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J 2004; 18(11): 1258–1260

[65]

de Zeeuw D, Akizawa T, Agarwal R, Audhya P, Bakris GL, Chin M, Krauth M, Lambers Heerspink HJ, Meyer CJ, McMurray JJ, Parving HH, Pergola PE, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Warnock DG, Wittes J, Chertow GM. Rationale and trial design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: the Occurrence of Renal Events (BEACON). Am J Nephrol2013; 37(3): 212–222

[66]

Chertow GM, de Zeeuw D; BEACON Steering Committee. Bardoxolone methyl in type 2 diabetes and advanced chronic kidney disease. N Engl J Med2014; 370(18): 1768

[67]

Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock DG; BEAM Study Investigators. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med2011; 365(4): 327–336

[68]

Boyd JH, Macklin EA, Strunk RC, DeBaun MR. Asthma is associated with increased mortality in individuals with sickle cell anemia. Haematologica2007; 92(8): 1115–1118

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (631KB)

3543

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/