Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets

Feng Wang, Chen Chen, Daowen Wang

PDF(634 KB)
PDF(634 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (4) : 404-418. DOI: 10.1007/s11684-014-0379-2
REVIEW
REVIEW

Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets

Author information +
History +

Abstract

microRNAs (miRNAs) are a class of conserved, short, non-coding RNAs that have important and potent capacities to regulate gene expression at the posttranscriptional level. In the past several years, the aberrant expressions of miRNAs in the cardiovascular system have been widely reported, and the crucial roles of some special miRNAs in heart development and pathophysiology of various cardiovascular diseases have been gradually recognized. Recently, it was discovered that miRNAs are presented in peripheral circulation abundantly and stably. This has raised the possibility of using circulating miRNAs as biomarkers for diseases. Furthermore, some studies demonstrated that circulating miRNAs may serve as novel extracellular communicators of cell-cell communication. These discoveries not only reveal the functions of circulating miRNAs in cardiovascular system but also inform the development of miRNAs therapeutic strategies. In this review, we discuss the potential roles of circulating miRNAs in a variety of cardiovascular diseases from biomarkers to therapeutic targets to clearly understand the roles of circulating miRNAs in cardiovascular system.

Keywords

microRNA / cardiovascular disease / biomarkers / therapeutic target

Cite this article

Download citation ▾
Feng Wang, Chen Chen, Daowen Wang. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets. Front. Med., 2014, 8(4): 404‒418 https://doi.org/10.1007/s11684-014-0379-2

References

[1]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell2004; 116(2): 281–297
CrossRef Pubmed Google scholar
[2]
Ambros V. The functions of animal microRNAs. Nature2004; 431(7006): 350–355
CrossRef Pubmed Google scholar
[3]
Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, Kampoli AM, Tsiamis E, Tentolouris C, Stefanadis C. The role of microRNAs in cardiovascular disease. Curr Med Chem2012; 19(16): 2605–2610
CrossRef Pubmed Google scholar
[4]
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J2002; 21(17): 4663–4670
CrossRef Pubmed Google scholar
[5]
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA2004; 10(12): 1957–1966
CrossRef Pubmed Google scholar
[6]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev2003; 17(24): 3011–3016
CrossRef Pubmed Google scholar
[7]
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science2004; 303(5654): 95–98
CrossRef Pubmed Google scholar
[8]
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA2004; 10(2): 185–191
CrossRef Pubmed Google scholar
[9]
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol2009; 10(2): 126–139
CrossRef Pubmed Google scholar
[10]
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell2006; 125(6): 1111–1124
CrossRef Pubmed Google scholar
[11]
Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol2007; 17(3): 118–126
CrossRef Pubmed Google scholar
[12]
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature2010; 466(7308): 835–840
CrossRef Pubmed Google scholar
[13]
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res2011; 39(Database): D152–D157
CrossRef Pubmed Google scholar
[14]
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell2005; 120(1): 21–24
CrossRef Pubmed Google scholar
[15]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell2005; 120(1): 15–20
CrossRef Pubmed Google scholar
[16]
Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol2013; 75(1): 69–93
CrossRef Pubmed Google scholar
[17]
Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest2013; 123(1): 11–18
CrossRef Pubmed Google scholar
[18]
Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation2008; 117(4): e25–e146
CrossRef Pubmed Google scholar
[19]
Charakida M, Tousoulis D, Stefanadis C. Early atherosclerosis in childhood: diagnostic approaches and therapeutic strategies. Int J Cardiol2006; 109(2): 152–159
CrossRef Pubmed Google scholar
[20]
Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J2011; 278(10): 1619–1633
CrossRef Pubmed Google scholar
[21]
Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation2010; 121(8): 1022–1032
CrossRef Pubmed Google scholar
[22]
van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov2012; 11(11): 860–872
CrossRef Pubmed Google scholar
[23]
van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res2008; 103(9): 919–928
CrossRef Pubmed Google scholar
[24]
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res2012; 110(3): 483–495
CrossRef Pubmed Google scholar
[25]
Fichtlscherer S, Zeiher AM, Dimmeler S, Sessa WC. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol2011; 31(11): 2383–2390
CrossRef Pubmed Google scholar
[26]
Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S. Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens2014; 28(5): 288–291
CrossRef Pubmed Google scholar
[27]
Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, Musacchio E, Barbieri M, Mauro C, Mosca N, Solimene F, Mottola MT, Russo A, Rossi F, Paolisso G, D’Amico M. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail2013; 15(11): 1277–1288
CrossRef Pubmed Google scholar
[28]
Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol2008; 141(5): 672–675
CrossRef Pubmed Google scholar
[29]
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA2008; 105(30): 10513–10518
CrossRef Pubmed Google scholar
[30]
Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem2002; 48(10): 1647–1653
Pubmed
[31]
El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem2004; 50(3): 564–573
CrossRef Pubmed Google scholar
[32]
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res2008; 18(10): 997–1006
CrossRef Pubmed Google scholar
[33]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem2010; 285(23): 17442–17452
CrossRef Pubmed Google scholar
[34]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol2007; 9(6): 654–659
CrossRef Pubmed Google scholar
[35]
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia2006; 20(5): 847–856
CrossRef Pubmed Google scholar
[36]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol2002; 2(8): 569–579
Pubmed
[37]
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int2010; 78(9): 838–848
CrossRef Pubmed Google scholar
[38]
Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE2010; 5(10): e13515
CrossRef Pubmed Google scholar
[39]
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem2013; 288: 10849–10859
CrossRef Pubmed Google scholar
[40]
Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol2012; 14(3): 249–256
CrossRef Pubmed Google scholar
[41]
Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol2003; 19(1): 397–422
CrossRef Pubmed Google scholar
[42]
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res2010; 70(4): 1668–1678
CrossRef Pubmed Google scholar
[43]
Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol2012; 44(9): 1574–1584
CrossRef Pubmed Google scholar
[44]
van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev2013; 65(3): 331–335
CrossRef Pubmed Google scholar
[45]
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia2006; 20(9): 1487–1495
CrossRef Pubmed Google scholar
[46]
Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachý J, Stangassinger M, Erfle V, Schlöndorff D. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med2000; 6(7): 769–775
CrossRef Pubmed Google scholar
[47]
Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci2010; 123(10): 1603–1611
CrossRef Pubmed Google scholar
[48]
Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood2009; 114(3): 723–732
CrossRef Pubmed Google scholar
[49]
Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Müller-Newen G, Soehnlein O, Weber C. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation2010; 122(5): 495–506
CrossRef Pubmed Google scholar
[50]
Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res2012; 93(4): 555–562
CrossRef Pubmed Google scholar
[51]
Köppler B, Cohen C, Schlöndorff D, Mack M. Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles. Eur J Immunol2006; 36(3): 648–660
CrossRef Pubmed Google scholar
[52]
Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl2008; 2(6): 882–891
CrossRef Pubmed Google scholar
[53]
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell2010; 39(1): 133–144
CrossRef Pubmed Google scholar
[54]
Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE2010; 5(7): e11803
CrossRef Pubmed Google scholar
[55]
Leroyer AS, Ebrahimian TG, Cochain C, Récalde A, Blanc-Brude O, Mees B, Vilar J, Tedgui A, Levy BI, Chimini G, Boulanger CM, Silvestre JS. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation2009; 119(21): 2808–2817
CrossRef Pubmed Google scholar
[56]
VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res2003; 59(2): 277–287
CrossRef Pubmed Google scholar
[57]
Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res2012; 93(4): 633–644
CrossRef Pubmed Google scholar
[58]
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res2010; 107(9): 1047–1057
CrossRef Pubmed Google scholar
[59]
Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol2002; 22(1): 101–107
CrossRef Pubmed Google scholar
[60]
Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol2010; 6(1): 21–29
CrossRef Pubmed Google scholar
[61]
Holmgren L, Bergsmedh A, Spetz AL. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang2002; 83(Suppl 1): 305–306
CrossRef Pubmed Google scholar
[62]
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal2009; 2(100): ra81
CrossRef Pubmed Google scholar
[63]
Janas T, Janas T, Yarus M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res2006; 34(7): 2128–2136
CrossRef Pubmed Google scholar
[64]
Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, Park M, Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther2007; 15(6): 1145–1152
Pubmed
[65]
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol2011; 13(4): 423–433
CrossRef Pubmed Google scholar
[66]
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA2011; 108(12): 5003–5008
CrossRef Pubmed Google scholar
[67]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res2011; 39(16): 7223–7233
CrossRef Pubmed Google scholar
[68]
Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol2012; 9(8): 1066–1075
CrossRef Pubmed Google scholar
[69]
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res2010; 38(20): 7248–7259
CrossRef Pubmed Google scholar
[70]
D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J2010; 31(22): 2765–2773
CrossRef Pubmed Google scholar
[71]
Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med2012; 4(11): 1176–1185
CrossRef Pubmed Google scholar
[72]
Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J2010; 31(6): 659–666
CrossRef Pubmed Google scholar
[73]
Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem2010; 56(7): 1183–1185
CrossRef Pubmed Google scholar
[74]
Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM. MiR423-5p as a circulating biomarker for heart failure. Circ Res2010; 106(6): 1035–1039
CrossRef Pubmed Google scholar
[75]
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating microRNAs in patients with coronary artery disease. Circ Res2010; 107(5): 677–684
CrossRef Pubmed Google scholar
[76]
Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation2011; 124(2): 175–184
CrossRef Pubmed Google scholar
[77]
Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet2010; 3(6): 499–506
CrossRef Pubmed Google scholar
[78]
White HD, Chew DP. Acute myocardial infarction. Lancet2008; 372(9638): 570–584
CrossRef Pubmed Google scholar
[79]
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science2007; 316(5824): 575–579
CrossRef Pubmed Google scholar
[80]
Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem2009; 55(11): 1944–1949
CrossRef Pubmed Google scholar
[81]
Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond)2010; 119(2): 87–95
CrossRef Pubmed Google scholar
[82]
Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun2010; 391(1): 73–77
CrossRef Pubmed Google scholar
[83]
De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating microRNAs. Circulation2011; 124(18): 1936–1944
CrossRef Pubmed Google scholar
[84]
Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet2011; 4(4): 446–454
CrossRef Pubmed Google scholar
[85]
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med2013; 11: 222
Pubmed
[86]
Boštjančič E, Zidar N, Štajer D, Glavač D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology2010; 115(3): 163–169
CrossRef Pubmed Google scholar
[87]
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell2009; 17(5): 662–673
CrossRef Pubmed Google scholar
[88]
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet2006; 38(2): 228–233
CrossRef Pubmed Google scholar
[89]
Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci2012; 8(6): 811–818
CrossRef Pubmed Google scholar
[90]
Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, Yang X, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE2012; 7(12): e50926
CrossRef Pubmed Google scholar
[91]
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS ONE2014; 9(9): e105734
CrossRef Pubmed Google scholar
[92]
Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol2012; 60(4): 290–299
CrossRef Pubmed Google scholar
[93]
Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J2011; 75(2): 336–340
CrossRef Pubmed Google scholar
[94]
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res2010; 107(6): 810–817
CrossRef Pubmed Google scholar
[95]
Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biessen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun2010; 394(3): 792–797
CrossRef Pubmed Google scholar
[96]
Yang LX, Liu G, Zhu GF, Liu H, Guo RW, Qi F, Zou JH. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J Renin Angiotensin Aldosterone Syst2014; 15: 109–116
Pubmed
[97]
Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, Fabricio AS, Squarcina E, Gion M, Palatini P, Semplicini A. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens2011; 24(2): 241–246
CrossRef Pubmed Google scholar
[98]
Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res2012; 11(1): 147–152
CrossRef Pubmed Google scholar
[99]
Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol2013; 13(1): 178
CrossRef Pubmed Google scholar
[100]
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol2008; 10(12): 1470–1476
CrossRef Pubmed Google scholar
[101]
Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest2013; 123(5): 2143–2154
CrossRef Pubmed Google scholar
[102]
Yang Y, Rodriguez JE, Kitsis RN. A microRNA links prolactin to peripartum cardiomyopathy. J Clin Invest2013; 123(5): 1925–1927
CrossRef Pubmed Google scholar
[103]
Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol2014; 74: 139–150
CrossRef Pubmed Google scholar
[104]
Iguchi H, Kosaka N, Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol2010; 3(5): 478–481
CrossRef Pubmed Google scholar
[105]
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA2010; 107(14): 6328–6333
CrossRef Pubmed Google scholar
[106]
Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood2012; 119(3): 756–766
CrossRef Pubmed Google scholar
[107]
McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem2011; 57(6): 833–840
CrossRef Pubmed Google scholar
[108]
van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA2006; 103(48): 18255–18260
CrossRef Pubmed Google scholar
[109]
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation2007; 116(3): 258–267
CrossRef Pubmed Google scholar
[110]
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature2008; 456(7224): 980–984
CrossRef Pubmed Google scholar
[111]
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA2008; 105(35): 13027–13032
CrossRef Pubmed Google scholar
[112]
Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell2008; 15(2): 261–271
CrossRef Pubmed Google scholar
[113]
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med2013; 368(18): 1685–1694
CrossRef Pubmed Google scholar
[114]
Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation2011; 124(14): 1537–1547
CrossRef Pubmed Google scholar
[115]
Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell2012; 149(3): 671–683
CrossRef Pubmed Google scholar
[116]
Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res2012; 110(1): 71–81
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grant from the National Natural Science Foundation of China (No. 31200594), Research Fund for the Doctoral Program of Higher Education of China (No. 20120142120056) and Project from Hubei Province (JX6A02).
Feng Wang, Chen Chen, and Daowen Wang declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(634 KB)

Accesses

Citations

Detail

Sections
Recommended

/