Three-dimensional reconstruction of light microscopy image sections: present and future

Yuzhen Wang, Rui Xu, Gaoxing Luo, Jun Wu

PDF(3126 KB)
PDF(3126 KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (1) : 30-45. DOI: 10.1007/s11684-014-0337-z
REVIEW
REVIEW

Three-dimensional reconstruction of light microscopy image sections: present and future

Author information +
History +

Abstract

Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstructures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a problem. Despite some drawbacks, histological sectioning remains one of the most powerful methods for accurate high-resolution representation of tissue structures. Computer technologies can produce 3D representations of interesting human tissue and organs that have been serial-sectioned, dyed or stained, imaged, and segmented for 3D visualization. 3D reconstruction also has great potential in the fields of tissue engineering and 3D printing. This article outlines the most common methods for 3D tissue section reconstruction. We describe the most important academic concepts in this field, and provide critical explanations and comparisons. We also note key steps in the reconstruction procedures, and highlight recent progress in the development of new reconstruction methods.

Keywords

microtomy / 3D imaging / computer-assisted image processing / 3D printing / tissue scaffold

Cite this article

Download citation ▾
Yuzhen Wang, Rui Xu, Gaoxing Luo, Jun Wu. Three-dimensional reconstruction of light microscopy image sections: present and future. Front. Med., 2015, 9(1): 30‒45 https://doi.org/10.1007/s11684-014-0337-z

References

[1]
Dickinson ME. Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn2006; 235(9): 2386-2400
CrossRef Pubmed Google scholar
[2]
Handschuh S, Schwaha T, Metscher BD. Showing their true colors: a practical approach to volume rendering from serial sections. BMC Dev Biol2010; 10(1): 41
CrossRef Pubmed Google scholar
[3]
Liu B, Gao XL, Yin HX, Luo SQ, Lu J. A detailed 3D model of the guinea pig cochlea. Brain Struct Funct2007; 212(2): 223-230
CrossRef Pubmed Google scholar
[4]
Rau TS, Hussong A, Herzog A, Majdani O, Lenarz T, Leinung M. Accuracy of computer-aided geometric 3D reconstruction based on histological serial microgrinding preparation. Comput Methods Biomech Biomed Engin2011; 14(7): 581-594
CrossRef Pubmed Google scholar
[5]
Liu R, Yin X, Li H, Shao Q, York P, He Y, Xiao T, Zhang J. Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction. Int J Pharm2013; 445(1-2): 125-133
CrossRef Pubmed Google scholar
[6]
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol2009; 9(1): 11
CrossRef Pubmed Google scholar
[7]
Burton RA, Schneider JE, Bishop MJ, Hales PW, Bollensdorff C, Robson MD, Wong KC, Morris J, Quinn TA, Kohl P. Microscopic magnetic resonance imaging reveals high prevalence of third coronary artery in human and rabbit heart. Europace2012; 14(Suppl 5): v73-v81
CrossRef Pubmed Google scholar
[8]
Hofman R, Segenhout JM, Wit HP. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction. J Microsc2009; 233(2): 251-257
CrossRef Pubmed Google scholar
[9]
Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc1993; 170(3): 229-236
CrossRef Pubmed Google scholar
[10]
Sharpe J. Optical projection tomography. Annu Rev Biomed Eng 2004; 6(1): 209-228
CrossRef Pubmed Google scholar
[11]
Eriksson AU, Svensson C, Hörnblad A, Cheddad A, Kostromina E, Eriksson M, Norlin N, Pileggi A, Sharpe J, Georgsson F, Alanentalo T, Ahlgren U. Near infrared optical projection tomography for assessments of β-cell mass distribution in diabetes research. J Vis Exp2013; (71): e50238
Pubmed
[12]
Vinegoni C, Fumene Feruglio P, Razansky D, Gorbatov R, Ntziachristos V, Sbarbati A, Nahrendorf M, Weissleder R. Mapping molecular agents distributions in whole mice hearts using born-normalized optical projection tomography. PLoS ONE2012; 7(4): e34427
CrossRef Pubmed Google scholar
[13]
Mujawar LH, Maan AA, Khan MK, Norde W, van Amerongen A. Distribution of biomolecules in porous nitrocellulose membrane pads using confocal laser scanning microscopy and high-speed cameras. Anal Chem2013; 85(7): 3723-3729
CrossRef Pubmed Google scholar
[14]
Hu W, Lux R, Shi W. Analysis of exopolysaccharides in Myxococcus xanthus using confocal laser scanning microscopy. Methods Mol Biol2013; 966: 121-131
CrossRef Pubmed Google scholar
[15]
Nomoto T, Matsumoto Y, Toh K, Christie RJ, Miyata K, Oba M, Cabral H, Murakami M, Fukushima S, Nishiyama N, Kataoka K. Evaluation of the dynamics of drug delivery systems (DDS) using intravital real-time confocal laser scanning microscopy. Yakugaku Zasshi2012; 132(12): 1347-1354 (in Japanese)
CrossRef Pubmed Google scholar
[16]
Zhang SX, Heng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, Liao RX, Li K, Cui GY, Guo YL, Yang XP, Liu GJ, Shan JL, Liu JJ, Zhang WG, Chen XH, Chen JH, Wang J, Chen W, Lu M, You J, Pang XL, Xiao H, Xie YM. Creation of the Chinese visible human data set. Anat Rec B New Anat2003; 275(1): 190-195
CrossRef Pubmed Google scholar
[17]
Alschinger M, Maniak M, Stietz F, Vartanyan T, TrägerF. Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement. Appl Phys B2003; 76: 771-774
CrossRef Google scholar
[18]
Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol2004; 2(11): e329
CrossRef Pubmed Google scholar
[19]
Andersson M, Groseclose MR, Deutch AY, Caprioli RM. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods2008; 5(1): 101-108
CrossRef Pubmed Google scholar
[20]
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science1990; 248(4951): 73-76
CrossRef Pubmed Google scholar
[21]
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods2005; 2(12): 932-940
CrossRef Pubmed Google scholar
[22]
Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett2003; 28(12): 1022-1024
CrossRef Pubmed Google scholar
[23]
Williams BS, Doyle MD. An internet atlas of mouse development. Comput Med Imaging Graph1996; 20(6): 433-447
CrossRef Pubmed Google scholar
[24]
Wang H, Merchant SN, Sorensen MS. A downloadable three-dimensional virtual model of the visible ear. ORL J Otorhinolaryngol Relat Spec2007; 69(2): 63-67
CrossRef Pubmed Google scholar
[25]
Woodward JD, Maina JN. A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat2005; 206(5): 477-492
CrossRef Pubmed Google scholar
[26]
Song WC, Hu KS, Kim HJ, Koh KS. A study of the secretion mechanism of the sebaceous gland using three-dimensional reconstruction to examine the morphological relationship between the sebaceous gland and the arrector pili muscle in the follicular unit. Br J Dermatol2007; 157(2): 325-330
CrossRef Pubmed Google scholar
[27]
Song WC, Hwang WJ, Shin C, Koh KS. A new model for the morphology of the arrector pili muscle in the follicular unit based on three-dimensional reconstruction. J Anat2006; 208(5): 643-648
CrossRef Pubmed Google scholar
[28]
Wu H, Jaeger M, Wang M, Li B, Zhang BG. Three-dimensional distribution of vessels, passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum). Ann Bot (Lond)2011; 107(5): 843-853
CrossRef Pubmed Google scholar
[29]
Yang F, Deng ZS, Fan QH. A method for fast automated microscope image stitching. Micron2013; 48: 17-25
CrossRef Pubmed Google scholar
[30]
Jia J, Tang CK. Image stitching using structure deformation. IEEE Trans Pattern Anal Mach Intell2008; 30(4): 617-631
CrossRef Pubmed Google scholar
[31]
Zomet A, Levin A, Peleg S, Weiss Y. Seamless image stitching by minimizing false edges. IEEE Trans Image Process2006; 15(4): 969-977
CrossRef Pubmed Google scholar
[32]
Paganelli C, Peroni M, Pennati F, Baroni G, Summers P, Bellomi M, Riboldi M. Scale Invariant Feature Transform as feature tracking method in 4D imaging: a feasibility study. Conf Proc IEEE Eng Med Biol Soc2012; 2012: 6543-6546
Pubmed
[33]
Zito FA, Marzullo F, D’Errico D, Salvatore C, Digirolamo R, Labriola A, Pellecchia A. Quicktime virtual reality technology in light microscopy to support medical education in pathology. Mod Pathol2004; 17(6): 728-731
CrossRef Pubmed Google scholar
[34]
Ma B, Zimmermann T, Rohde M, Winkelbach S, He F, Lindenmaier W, Dittmar KE. Use of Autostitch for automatic stitching of microscope images. Micron2007; 38(5): 492-499
CrossRef Pubmed Google scholar
[35]
Kurien T, Boyce RW, Paish EC, Ronan J, Maddison J, Rakha EA, Green AR, Ellis IO. Three dimensional reconstruction of a human breast carcinoma using routine laboratory equipment and immunohistochemistry. J Clin Pathol2005; 58(9): 968-972
CrossRef Pubmed Google scholar
[36]
Mai KT, Yazdi HM, Burns BF, Perkins DG. Pattern of distribution of intraductal and infiltrating ductal carcinoma: a three-dimensional study using serial coronal giant sections of the breast. Hum Pathol2000; 31(4): 464-474
CrossRef Pubmed Google scholar
[37]
Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol2001; 46(3): R1-R45
CrossRef Pubmed Google scholar
[38]
Fernandez JJ. Computational methods for electron tomography. Micron2012; 43(10): 1010-1030
CrossRef Pubmed Google scholar
[39]
Zaraga F, Langfelder G. White balance by tunable spectral responsivities. J Opt Soc Am A Opt Image Sci Vis2010; 27(1): 31-39
CrossRef Pubmed Google scholar
[40]
Sibarita JB. Deconvolution microscopy. Adv Biochem Eng Biotechnol2005; 95: 201-243
CrossRef Pubmed Google scholar
[41]
Zitová B, Flusser J. Image registration methods: a survey. Image Vis Comput2003; 21(11): 977-1000
CrossRef Google scholar
[42]
Lippolis G, Edsjö A, Helczynski L, Bjartell A, Overgaard NC. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections. BMC Cancer2013; 13(1): 408
CrossRef Pubmed Google scholar
[43]
Randell SH, Mercer RR, Young SL. Postnatal growth of pulmonary acini and alveoli in normal and oxygen-exposed rats studied by serial section reconstructions. Am J Anat1989; 186(1): 55-68
CrossRef Pubmed Google scholar
[44]
Woodward JD, Maina JN. Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction. J Microsc2008; 230(1): 84-93
CrossRef Pubmed Google scholar
[45]
Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol2004; 77(Spec No. 2): S140-S153
CrossRef Pubmed Google scholar
[46]
Christina Lee WC, Tublin ME, Chapman BE. Registration of MR and CT images of the liver: comparison of voxel similarity and surface based registration algorithms. Comput Methods Programs Biomed2005; 78(2): 101-114
CrossRef Pubmed Google scholar
[47]
Arai TJ, Villongco CT, Villongco MT, Hopkins SR, Theilmann RJ. Affine transformation registers small scale lung deformation. Conf Proc IEEE Eng Med Biol Soc2012; 2012: 5298-5301
Pubmed
[48]
Hong K, Hong J, Jung JH, Park JH, Lee B. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging. Opt Express2010; 18(11): 12002-12016
CrossRef Pubmed Google scholar
[49]
Ross JC, San José Estépar R, Kindlmann G, Díaz A, Westin CF, Silverman EK, Washko GR. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation. Med Image Comput Comput Assist Interv2010; 13(Pt 3): 163-171
Pubmed
[50]
Ma Z, Tavares JMRS, Jorge RN, Mascarenhas T. A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Engin2010; 13(2): 235-246
CrossRef Pubmed Google scholar
[51]
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng2000; 2(1): 315-337
CrossRef Pubmed Google scholar
[52]
Le Pogam A, Hatt M, Descourt P, Boussion N, Tsoumpas C, Turkheimer FE, Prunier-Aesch C, Baulieu JL, Guilloteau D, Visvikis D. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys2011; 38(9): 4920-4923
CrossRef Pubmed Google scholar
[53]
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell1986; 8(6): 679-698
CrossRef Pubmed Google scholar
[54]
Pan Z, Lu J. A bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng2007; 9(4): 32-38
CrossRef Google scholar
[55]
Wang H, Chen X, Moss RH, Stanley RJ, Stoecker WV, Celebi ME, Szalapski TM, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW. Watershed segmentation of dermoscopy images using a watershed technique. Skin Res Technol2010; 16(3): 378-384
Pubmed
[56]
Maksimovic R, Stankovic S, Milovanovic D. Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models-‘snakes’. Int J Med Inform2000; 58-59: 29-37
CrossRef Pubmed Google scholar
[57]
Molinari F1, Meiburger KM, Acharya UR, Zeng G, Rodrigues PS, Saba L, Nicolaides A, Suri JS. CARES 3.0: a two stage system combining feature-based recognition and edge-based segmentation for CIMT measurement on a multi-institutional ultrasound database of 300 images. Conf Proc IEEE Eng Med Biol Soc2011; 2011: 5149-5152
Pubmed
[58]
Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys1993; 20(4): 1033-1048
CrossRef Pubmed Google scholar
[59]
Zaidi H. Quantitative analysis in nuclear medicine imaging. 1st ed. New York, NY: Springer, 2005
[60]
Choplin RH1, Farber JM, Buckwalter KA, Swan S. Three-dimensional volume rendering of the tendons of the ankle and foot. Semin Musculoskelet Radiol2004; 8(2): 175-183
Pubmed
[61]
Tam MDBS. Building virtual models by postprocessing radiology images: A guide for anatomy faculty. Anat Sci Educ2010; 3(5): 261-266
CrossRef Pubmed Google scholar
[62]
Clendenon JL, Byars JM, Hyink DP. Image processing software for 3D light microscopy. Nephron, Exp Nephrol2006; 103(2): e50-e54
CrossRef Pubmed Google scholar
[63]
Wu X, Yu Z, Liu N. Comparison of approaches for microscopic imaging of skin lymphatic vessels. Scanning2012; 34(3): 174-180
CrossRef Pubmed Google scholar
[64]
Sun K, Zhang J, Chen T, Chen Z, Chen Z, Li Z, Li H, Hu P. Three-dimensional reconstruction and visualization of the median nerve from serial tissue sections. Microsurgery2009; 29(7): 573-577
CrossRef Pubmed Google scholar
[65]
Teutsch HF, Schuerfeld D, Groezinger E. Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology1999; 29(2): 494-505
CrossRef Pubmed Google scholar
[66]
Helmstaedter M, Mitra PP. Computational methods and challenges for large-scale circuit mapping. Curr Opin Neurobiol2012; 22(1): 162-169
CrossRef Pubmed Google scholar
[67]
Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature2013; 500(7461): 168-174
CrossRef Pubmed Google scholar
[68]
Helmstaedter M, Briggman KL, Denk W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci2011; 14(8): 1081-1088
CrossRef Pubmed Google scholar
[69]
Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn2002; 225(3): 369-375
CrossRef Pubmed Google scholar
[70]
Weninger WJ, Mohun T. Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet2002; 30(1): 59-65
CrossRef Pubmed Google scholar
[71]
Blumer MJ, Gahleitner P, Narzt T, Handl C, Ruthensteiner B. Ribbons of semithin sections: an advanced method with a new type of diamond knife. J Neurosci Methods2002; 120(1): 11-16
CrossRef Pubmed Google scholar
[72]
Chen SG, Tzeng YS, Wang CH. Treatment of severe burn with DermACELL®, an acellular dermal matrix. Int J Burns Trauma2012; 2(2): 105-109
Pubmed

Acknowledgements

This paper was supported by a grant from the National High Technology Research and Development Program of China (863 program) (No. 2012AA020504) and the National Natural Science Foundation of China (Key Program) (No. 81027004). We thank the authors in our list of references for their excellent work, which led to the main content and structure of this review.
Yuzhen Wang, Rui Xu, Gaoxing Luo, and Jun Wu declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3126 KB)

Accesses

Citations

Detail

Sections
Recommended

/