Three-dimensional reconstruction of light microscopy image sections: present and future
Yuzhen Wang, Rui Xu, Gaoxing Luo, Jun Wu
Three-dimensional reconstruction of light microscopy image sections: present and future
Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstructures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a problem. Despite some drawbacks, histological sectioning remains one of the most powerful methods for accurate high-resolution representation of tissue structures. Computer technologies can produce 3D representations of interesting human tissue and organs that have been serial-sectioned, dyed or stained, imaged, and segmented for 3D visualization. 3D reconstruction also has great potential in the fields of tissue engineering and 3D printing. This article outlines the most common methods for 3D tissue section reconstruction. We describe the most important academic concepts in this field, and provide critical explanations and comparisons. We also note key steps in the reconstruction procedures, and highlight recent progress in the development of new reconstruction methods.
microtomy / 3D imaging / computer-assisted image processing / 3D printing / tissue scaffold
[1] |
Dickinson ME. Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn2006; 235(9): 2386-2400
CrossRef
Pubmed
Google scholar
|
[2] |
Handschuh S, Schwaha T, Metscher BD. Showing their true colors: a practical approach to volume rendering from serial sections. BMC Dev Biol2010; 10(1): 41
CrossRef
Pubmed
Google scholar
|
[3] |
Liu B, Gao XL, Yin HX, Luo SQ, Lu J. A detailed 3D model of the guinea pig cochlea. Brain Struct Funct2007; 212(2): 223-230
CrossRef
Pubmed
Google scholar
|
[4] |
Rau TS, Hussong A, Herzog A, Majdani O, Lenarz T, Leinung M. Accuracy of computer-aided geometric 3D reconstruction based on histological serial microgrinding preparation. Comput Methods Biomech Biomed Engin2011; 14(7): 581-594
CrossRef
Pubmed
Google scholar
|
[5] |
Liu R, Yin X, Li H, Shao Q, York P, He Y, Xiao T, Zhang J. Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction. Int J Pharm2013; 445(1-2): 125-133
CrossRef
Pubmed
Google scholar
|
[6] |
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol2009; 9(1): 11
CrossRef
Pubmed
Google scholar
|
[7] |
Burton RA, Schneider JE, Bishop MJ, Hales PW, Bollensdorff C, Robson MD, Wong KC, Morris J, Quinn TA, Kohl P. Microscopic magnetic resonance imaging reveals high prevalence of third coronary artery in human and rabbit heart. Europace2012; 14(Suppl 5): v73-v81
CrossRef
Pubmed
Google scholar
|
[8] |
Hofman R, Segenhout JM, Wit HP. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction. J Microsc2009; 233(2): 251-257
CrossRef
Pubmed
Google scholar
|
[9] |
Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc1993; 170(3): 229-236
CrossRef
Pubmed
Google scholar
|
[10] |
Sharpe J. Optical projection tomography. Annu Rev Biomed Eng 2004; 6(1): 209-228
CrossRef
Pubmed
Google scholar
|
[11] |
Eriksson AU, Svensson C, Hörnblad A, Cheddad A, Kostromina E, Eriksson M, Norlin N, Pileggi A, Sharpe J, Georgsson F, Alanentalo T, Ahlgren U. Near infrared optical projection tomography for assessments of β-cell mass distribution in diabetes research. J Vis Exp2013; (71): e50238
Pubmed
|
[12] |
Vinegoni C, Fumene Feruglio P, Razansky D, Gorbatov R, Ntziachristos V, Sbarbati A, Nahrendorf M, Weissleder R. Mapping molecular agents distributions in whole mice hearts using born-normalized optical projection tomography. PLoS ONE2012; 7(4): e34427
CrossRef
Pubmed
Google scholar
|
[13] |
Mujawar LH, Maan AA, Khan MK, Norde W, van Amerongen A. Distribution of biomolecules in porous nitrocellulose membrane pads using confocal laser scanning microscopy and high-speed cameras. Anal Chem2013; 85(7): 3723-3729
CrossRef
Pubmed
Google scholar
|
[14] |
Hu W, Lux R, Shi W. Analysis of exopolysaccharides in Myxococcus xanthus using confocal laser scanning microscopy. Methods Mol Biol2013; 966: 121-131
CrossRef
Pubmed
Google scholar
|
[15] |
Nomoto T, Matsumoto Y, Toh K, Christie RJ, Miyata K, Oba M, Cabral H, Murakami M, Fukushima S, Nishiyama N, Kataoka K. Evaluation of the dynamics of drug delivery systems (DDS) using intravital real-time confocal laser scanning microscopy. Yakugaku Zasshi2012; 132(12): 1347-1354 (in Japanese)
CrossRef
Pubmed
Google scholar
|
[16] |
Zhang SX, Heng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, Liao RX, Li K, Cui GY, Guo YL, Yang XP, Liu GJ, Shan JL, Liu JJ, Zhang WG, Chen XH, Chen JH, Wang J, Chen W, Lu M, You J, Pang XL, Xiao H, Xie YM. Creation of the Chinese visible human data set. Anat Rec B New Anat2003; 275(1): 190-195
CrossRef
Pubmed
Google scholar
|
[17] |
Alschinger M, Maniak M, Stietz F, Vartanyan T, TrägerF. Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement. Appl Phys B2003; 76: 771-774
CrossRef
Google scholar
|
[18] |
Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol2004; 2(11): e329
CrossRef
Pubmed
Google scholar
|
[19] |
Andersson M, Groseclose MR, Deutch AY, Caprioli RM. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods2008; 5(1): 101-108
CrossRef
Pubmed
Google scholar
|
[20] |
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science1990; 248(4951): 73-76
CrossRef
Pubmed
Google scholar
|
[21] |
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods2005; 2(12): 932-940
CrossRef
Pubmed
Google scholar
|
[22] |
Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett2003; 28(12): 1022-1024
CrossRef
Pubmed
Google scholar
|
[23] |
Williams BS, Doyle MD. An internet atlas of mouse development. Comput Med Imaging Graph1996; 20(6): 433-447
CrossRef
Pubmed
Google scholar
|
[24] |
Wang H, Merchant SN, Sorensen MS. A downloadable three-dimensional virtual model of the visible ear. ORL J Otorhinolaryngol Relat Spec2007; 69(2): 63-67
CrossRef
Pubmed
Google scholar
|
[25] |
Woodward JD, Maina JN. A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat2005; 206(5): 477-492
CrossRef
Pubmed
Google scholar
|
[26] |
Song WC, Hu KS, Kim HJ, Koh KS. A study of the secretion mechanism of the sebaceous gland using three-dimensional reconstruction to examine the morphological relationship between the sebaceous gland and the arrector pili muscle in the follicular unit. Br J Dermatol2007; 157(2): 325-330
CrossRef
Pubmed
Google scholar
|
[27] |
Song WC, Hwang WJ, Shin C, Koh KS. A new model for the morphology of the arrector pili muscle in the follicular unit based on three-dimensional reconstruction. J Anat2006; 208(5): 643-648
CrossRef
Pubmed
Google scholar
|
[28] |
Wu H, Jaeger M, Wang M, Li B, Zhang BG. Three-dimensional distribution of vessels, passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum). Ann Bot (Lond)2011; 107(5): 843-853
CrossRef
Pubmed
Google scholar
|
[29] |
Yang F, Deng ZS, Fan QH. A method for fast automated microscope image stitching. Micron2013; 48: 17-25
CrossRef
Pubmed
Google scholar
|
[30] |
Jia J, Tang CK. Image stitching using structure deformation. IEEE Trans Pattern Anal Mach Intell2008; 30(4): 617-631
CrossRef
Pubmed
Google scholar
|
[31] |
Zomet A, Levin A, Peleg S, Weiss Y. Seamless image stitching by minimizing false edges. IEEE Trans Image Process2006; 15(4): 969-977
CrossRef
Pubmed
Google scholar
|
[32] |
Paganelli C, Peroni M, Pennati F, Baroni G, Summers P, Bellomi M, Riboldi M. Scale Invariant Feature Transform as feature tracking method in 4D imaging: a feasibility study. Conf Proc IEEE Eng Med Biol Soc2012; 2012: 6543-6546
Pubmed
|
[33] |
Zito FA, Marzullo F, D’Errico D, Salvatore C, Digirolamo R, Labriola A, Pellecchia A. Quicktime virtual reality technology in light microscopy to support medical education in pathology. Mod Pathol2004; 17(6): 728-731
CrossRef
Pubmed
Google scholar
|
[34] |
Ma B, Zimmermann T, Rohde M, Winkelbach S, He F, Lindenmaier W, Dittmar KE. Use of Autostitch for automatic stitching of microscope images. Micron2007; 38(5): 492-499
CrossRef
Pubmed
Google scholar
|
[35] |
Kurien T, Boyce RW, Paish EC, Ronan J, Maddison J, Rakha EA, Green AR, Ellis IO. Three dimensional reconstruction of a human breast carcinoma using routine laboratory equipment and immunohistochemistry. J Clin Pathol2005; 58(9): 968-972
CrossRef
Pubmed
Google scholar
|
[36] |
Mai KT, Yazdi HM, Burns BF, Perkins DG. Pattern of distribution of intraductal and infiltrating ductal carcinoma: a three-dimensional study using serial coronal giant sections of the breast. Hum Pathol2000; 31(4): 464-474
CrossRef
Pubmed
Google scholar
|
[37] |
Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol2001; 46(3): R1-R45
CrossRef
Pubmed
Google scholar
|
[38] |
Fernandez JJ. Computational methods for electron tomography. Micron2012; 43(10): 1010-1030
CrossRef
Pubmed
Google scholar
|
[39] |
Zaraga F, Langfelder G. White balance by tunable spectral responsivities. J Opt Soc Am A Opt Image Sci Vis2010; 27(1): 31-39
CrossRef
Pubmed
Google scholar
|
[40] |
Sibarita JB. Deconvolution microscopy. Adv Biochem Eng Biotechnol2005; 95: 201-243
CrossRef
Pubmed
Google scholar
|
[41] |
Zitová B, Flusser J. Image registration methods: a survey. Image Vis Comput2003; 21(11): 977-1000
CrossRef
Google scholar
|
[42] |
Lippolis G, Edsjö A, Helczynski L, Bjartell A, Overgaard NC. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections. BMC Cancer2013; 13(1): 408
CrossRef
Pubmed
Google scholar
|
[43] |
Randell SH, Mercer RR, Young SL. Postnatal growth of pulmonary acini and alveoli in normal and oxygen-exposed rats studied by serial section reconstructions. Am J Anat1989; 186(1): 55-68
CrossRef
Pubmed
Google scholar
|
[44] |
Woodward JD, Maina JN. Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction. J Microsc2008; 230(1): 84-93
CrossRef
Pubmed
Google scholar
|
[45] |
Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol2004; 77(Spec No. 2): S140-S153
CrossRef
Pubmed
Google scholar
|
[46] |
Christina Lee WC, Tublin ME, Chapman BE. Registration of MR and CT images of the liver: comparison of voxel similarity and surface based registration algorithms. Comput Methods Programs Biomed2005; 78(2): 101-114
CrossRef
Pubmed
Google scholar
|
[47] |
Arai TJ, Villongco CT, Villongco MT, Hopkins SR, Theilmann RJ. Affine transformation registers small scale lung deformation. Conf Proc IEEE Eng Med Biol Soc2012; 2012: 5298-5301
Pubmed
|
[48] |
Hong K, Hong J, Jung JH, Park JH, Lee B. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging. Opt Express2010; 18(11): 12002-12016
CrossRef
Pubmed
Google scholar
|
[49] |
Ross JC, San José Estépar R, Kindlmann G, Díaz A, Westin CF, Silverman EK, Washko GR. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation. Med Image Comput Comput Assist Interv2010; 13(Pt 3): 163-171
Pubmed
|
[50] |
Ma Z, Tavares JMRS, Jorge RN, Mascarenhas T. A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Engin2010; 13(2): 235-246
CrossRef
Pubmed
Google scholar
|
[51] |
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng2000; 2(1): 315-337
CrossRef
Pubmed
Google scholar
|
[52] |
Le Pogam A, Hatt M, Descourt P, Boussion N, Tsoumpas C, Turkheimer FE, Prunier-Aesch C, Baulieu JL, Guilloteau D, Visvikis D. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys2011; 38(9): 4920-4923
CrossRef
Pubmed
Google scholar
|
[53] |
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell1986; 8(6): 679-698
CrossRef
Pubmed
Google scholar
|
[54] |
Pan Z, Lu J. A bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng2007; 9(4): 32-38
CrossRef
Google scholar
|
[55] |
Wang H, Chen X, Moss RH, Stanley RJ, Stoecker WV, Celebi ME, Szalapski TM, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW. Watershed segmentation of dermoscopy images using a watershed technique. Skin Res Technol2010; 16(3): 378-384
Pubmed
|
[56] |
Maksimovic R, Stankovic S, Milovanovic D. Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models-‘snakes’. Int J Med Inform2000; 58-59: 29-37
CrossRef
Pubmed
Google scholar
|
[57] |
Molinari F1, Meiburger KM, Acharya UR, Zeng G, Rodrigues PS, Saba L, Nicolaides A, Suri JS. CARES 3.0: a two stage system combining feature-based recognition and edge-based segmentation for CIMT measurement on a multi-institutional ultrasound database of 300 images. Conf Proc IEEE Eng Med Biol Soc2011; 2011: 5149-5152
Pubmed
|
[58] |
Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys1993; 20(4): 1033-1048
CrossRef
Pubmed
Google scholar
|
[59] |
Zaidi H. Quantitative analysis in nuclear medicine imaging. 1st ed. New York, NY: Springer, 2005
|
[60] |
Choplin RH1, Farber JM, Buckwalter KA, Swan S. Three-dimensional volume rendering of the tendons of the ankle and foot. Semin Musculoskelet Radiol2004; 8(2): 175-183
Pubmed
|
[61] |
Tam MDBS. Building virtual models by postprocessing radiology images: A guide for anatomy faculty. Anat Sci Educ2010; 3(5): 261-266
CrossRef
Pubmed
Google scholar
|
[62] |
Clendenon JL, Byars JM, Hyink DP. Image processing software for 3D light microscopy. Nephron, Exp Nephrol2006; 103(2): e50-e54
CrossRef
Pubmed
Google scholar
|
[63] |
Wu X, Yu Z, Liu N. Comparison of approaches for microscopic imaging of skin lymphatic vessels. Scanning2012; 34(3): 174-180
CrossRef
Pubmed
Google scholar
|
[64] |
Sun K, Zhang J, Chen T, Chen Z, Chen Z, Li Z, Li H, Hu P. Three-dimensional reconstruction and visualization of the median nerve from serial tissue sections. Microsurgery2009; 29(7): 573-577
CrossRef
Pubmed
Google scholar
|
[65] |
Teutsch HF, Schuerfeld D, Groezinger E. Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology1999; 29(2): 494-505
CrossRef
Pubmed
Google scholar
|
[66] |
Helmstaedter M, Mitra PP. Computational methods and challenges for large-scale circuit mapping. Curr Opin Neurobiol2012; 22(1): 162-169
CrossRef
Pubmed
Google scholar
|
[67] |
Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature2013; 500(7461): 168-174
CrossRef
Pubmed
Google scholar
|
[68] |
Helmstaedter M, Briggman KL, Denk W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci2011; 14(8): 1081-1088
CrossRef
Pubmed
Google scholar
|
[69] |
Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn2002; 225(3): 369-375
CrossRef
Pubmed
Google scholar
|
[70] |
Weninger WJ, Mohun T. Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet2002; 30(1): 59-65
CrossRef
Pubmed
Google scholar
|
[71] |
Blumer MJ, Gahleitner P, Narzt T, Handl C, Ruthensteiner B. Ribbons of semithin sections: an advanced method with a new type of diamond knife. J Neurosci Methods2002; 120(1): 11-16
CrossRef
Pubmed
Google scholar
|
[72] |
Chen SG, Tzeng YS, Wang CH. Treatment of severe burn with DermACELL®, an acellular dermal matrix. Int J Burns Trauma2012; 2(2): 105-109
Pubmed
|
/
〈 | 〉 |