Transcriptomics and proteomics in stem cell research

Hai Wang, Qian Zhang, Xiangdong Fang

PDF(690 KB)
PDF(690 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (4) : 433-444. DOI: 10.1007/s11684-014-0336-0
REVIEW
REVIEW

Transcriptomics and proteomics in stem cell research

Author information +
History +

Abstract

Stem cells are capable of self-renewal and differentiation, and the processes regulating these events are among the most comprehensively investigated topics in life sciences. In particular, the molecular mechanisms of the self-renewal, proliferation, and differentiation of stem cells have been extensively examined. Multi-omics integrative analysis, such as transcriptomics combined with proteomics, is one of the most promising approaches to the systemic investigation of stem cell biology. We reviewed the available information on stem cells by examining published results using transcriptomic and proteomic characterization of the different stem cell processes. Comprehensive understanding of these important processes can only be achieved using a systemic methodology, and employing such method will strengthen the study on stem cell biology and promote the clinical applications of stem cells.

Keywords

embryonic stem cells / transcriptomics / proteomics

Cite this article

Download citation ▾
Hai Wang, Qian Zhang, Xiangdong Fang. Transcriptomics and proteomics in stem cell research. Front. Med., 2014, 8(4): 433‒444 https://doi.org/10.1007/s11684-014-0336-0

References

[1]
Ahn SM, Simpson R, Lee B. Genomics and proteomics in stem cell research: the road ahead. Anat Cell Biol 2010; 43(1): 1–14
CrossRef Pubmed Google scholar
[2]
Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10(2): 116–125
CrossRef Pubmed Google scholar
[3]
Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005; 85(2): 635–678
CrossRef Pubmed Google scholar
[4]
Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet 2006; 15(Spec No 1): R95–R101
CrossRef Pubmed Google scholar
[5]
Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. Methods Mol Biol 2011; 719: 3–30
CrossRef Pubmed Google scholar
[6]
Stanton LW, Bakre MM. Genomic and proteomic characterization of embryonic stem cells. Curr Opin Chem Biol 2007; 11(4): 399–404
CrossRef Pubmed Google scholar
[7]
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57–63
CrossRef Pubmed Google scholar
[8]
Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RDG, Buetow KH, Gingeras TR, Misteli T, Meshorer E. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008; 2(5): 437–447
CrossRef Pubmed Google scholar
[9]
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5(1): 111–123
CrossRef Pubmed Google scholar
[10]
Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cells. Dev Biol 2004; 269(2): 360–380
CrossRef Pubmed Google scholar
[11]
Bhattacharya B, Miura T, Brandenberger R, Mejido J, Luo Y, Yang AX, Joshi BH, Ginis I, Thies RS, Amit M, Lyons I, Condie BG, Itskovitz-Eldor J, Rao MS, Puri RK. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004; 103(8): 2956–2964
CrossRef Pubmed Google scholar
[12]
Brandenberger R, Khrebtukova I, Thies RS, Miura T, Jingli C, Puri R, Vasicek T, Lebkowski J, Rao M. MPSS profiling of human embryonic stem cells. BMC Dev Biol 2004; 4(1): 10
CrossRef Pubmed Google scholar
[13]
Zhan M. Genomic studies to explore self-renewal and differentiation properties of embryonic stem cells. Front Biosci 2008; 13(13): 276–283
CrossRef Pubmed Google scholar
[14]
Djouad F, Bony C, Canovas F, Fromigué O, Rème T, Jorgensen C, Noël D. Transcriptomic analysis identifies Foxo3A as a novel transcription factor regulating mesenchymal stem cell chrondrogenic differentiation. Cloning Stem Cells 2009; 11(3): 407–416
CrossRef Pubmed Google scholar
[15]
Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002; 298(5593): 601–604
CrossRef Pubmed Google scholar
[16]
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298(5593): 597–600
CrossRef Pubmed Google scholar
[17]
Suárez-Fariñas M, Noggle S, Heke M, Hemmati-Brivanlou A, Magnasco MO. Comparing independent microarray studies: the case of human embryonic stem cells. BMC Genomics 2005; 6(1): 99
CrossRef Pubmed Google scholar
[18]
Yang Y, Wang H, Chang KH, Qu H, Zhang Z, Xiong Q, Qi H, Cui P, Lin Q, Ruan X, Yang Y, Li Y, Shu C, Li Q, Wakeland EK, Yan J, Hu S, Fang X. Transcriptome dynamics during human erythroid differentiation and development. Genomics 2013; 102(5-6): 431–441
CrossRef Pubmed Google scholar
[19]
Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG, Almada AE, Lin C, Sharp PA, Giallourakis CC, Young RA. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 2013; 110(8): 2876–2881
CrossRef Pubmed Google scholar
[20]
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20(9): 1131–1139
CrossRef Pubmed Google scholar
[21]
MacRae T, Sargeant T, Lemieux S, Hébert J, Deneault E, Sauvageau G. RNA-Seq reveals spliceosome and proteasome genes as most consistent transcripts in human cancer cells. PLoS ONE 2013; 8(9): e72884
CrossRef Pubmed Google scholar
[22]
Jääger K, Islam S, Zajac P, Linnarsson S, Neuman T. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells. PLoS ONE 2012; 7(6): e38833
CrossRef Pubmed Google scholar
[23]
Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, Lancini C, van Lohuizen M.In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 2013; 23(5): 660–676
CrossRef Pubmed Google scholar
[24]
Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC, Vranizan K, Spindler MJ, Pico AR, Cline MS, Clark TA, Williams A, Blume JE, Samal E, Mercola M, Merrill BJ, Conklin BR. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 2010; 107(23): 10514–10519
CrossRef Pubmed Google scholar
[25]
Wu JQ, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M. Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA 2010; 107(11): 5254–5259
CrossRef Pubmed Google scholar
[26]
Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004; 22(6): 707–716
CrossRef Pubmed Google scholar
[27]
Anisimov SV, Tarasov KV, Tweedie D, Stern MD, Wobus AM, Boheler KR. SAGE identification of gene transcripts with profiles unique to pluripotent mouse R1 embryonic stem cells. Genomics 2002; 79(2): 169–176
CrossRef Pubmed Google scholar
[28]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522–531
CrossRef Pubmed Google scholar
[29]
Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004; 270(2): 488–498
CrossRef Pubmed Google scholar
[30]
Jouneau A, Ciaudo C, Sismeiro O, Brochard V, Jouneau L, Vandormael-Pournin S, Coppée JY, Zhou Q, Heard E, Antoniewski C, Cohen-Tannoudji M. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA 2012; 18(2): 253–264
CrossRef Pubmed Google scholar
[31]
Kirigin FF, Lindstedt K, Sellars M, Ciofani M, Low SL, Jones L, Bell F, Pauli F, Bonneau R, Myers RM, Littman DR, Chong MMW. Dynamic microRNA gene transcription and processing during T cell development. J Immunol 2012; 188(7): 3257–3267
CrossRef Pubmed Google scholar
[32]
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134(3): 521–533
CrossRef Pubmed Google scholar
[33]
Mattick JS. A new paradigm for developmental biology. J Exp Biol 2007; 210(Pt 9): 1526–1547
CrossRef Pubmed Google scholar
[34]
Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 2010; 16(2): 324–337
CrossRef Pubmed Google scholar
[35]
Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18(9): 1433–1445
CrossRef Pubmed Google scholar
[36]
Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 2013; 12(5): 616–628
CrossRef Pubmed Google scholar
[37]
Unwin RD, Gaskell SJ, Evans CA, Whetton AD. The potential for proteomic definition of stem cell populations. Exp Hematol 2003; 31(12): 1147–1159
CrossRef Pubmed Google scholar
[38]
Baharvand H, Fathi A, van Hoof D, Salekdeh GH. Concise review: trends in stem cell proteomics. Stem Cells 2007; 25(8): 1888–1903
CrossRef Pubmed Google scholar
[39]
Nagano K, Taoka M, Yamauchi Y, Itagaki C, Shinkawa T, Nunomura K, Okamura N, Takahashi N, Izumi T, Isobe T. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics 2005; 5(5): 1346–1361
CrossRef Pubmed Google scholar
[40]
Nasrabadi D, Rezaei Larijani M, Pirhaji L, Gourabi H, Shahverdi A, Baharvand H, Salekdeh GH. Proteomic analysis of monkey embryonic stem cell during differentiation. J Proteome Res 2009; 8(3): 1527–1539
CrossRef Pubmed Google scholar
[41]
Böser A, Drexler HCA, Reuter H, Schmitz H, Wu G, Schöler HR, Gentile L, Bartscherer K. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells. Cell Reports 2013; 5(4): 1142–1155
CrossRef Pubmed Google scholar
[42]
Sun Y, Yang Y, Zeng S, Tan Y, Lu G, Lin G. Identification of proteins related to epigenetic regulation in the malignant transformation of aberrant karyotypic human embryonic stem cells by quantitative proteomics. PLoS ONE 2014; 9(1): e85823
CrossRef Pubmed Google scholar
[43]
D’Aguanno S, Barcaroli D, Rossi C, Zucchelli M, Ciavardelli D, Cortese C, De Cola A, Volpe S, D’Agostino D, Todaro M, Stassi G, Di Ilio C, Urbani A, De Laurenzi V. p63 Isoforms Regulate Metabolism of Cancer Stem Cells. J Proteome Res 2014; 13(4): 2120–2136
CrossRef Pubmed Google scholar
[44]
Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008; 320(5877): 807–811
CrossRef Pubmed Google scholar
[45]
Gonzalez R, Jennings LL, Knuth M, Orth AP, Klock HE, Ou W, Feuerhelm J, Hull MV, Koesema E, Wang Y, Zhang J, Wu C, Cho CY, Su AI, Batalov S, Chen H, Johnson K, Laffitte B, Nguyen DG, Snyder EY, Schultz PG, Harris JL, Lesley SA. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci USA 2010; 107(8): 3552–3557
CrossRef Pubmed Google scholar
[46]
Gemei M, Corbo C, D’Alessio F, Di Noto R, Vento R, Del Vecchio L. Surface proteomic analysis of differentiated versus stem-like osteosarcoma human cells. Proteomics 2013; 13(22): 3293–3297
CrossRef Pubmed Google scholar
[47]
Van Hoof D, Muñoz J, Braam SR, Pinkse MWH, Linding R, Heck AJR, Mummery CL, Krijgsveld J. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 2009; 5(2): 214–226
CrossRef Pubmed Google scholar
[48]
Brill LM, Xiong W, Lee KB, Ficarro SB, Crain A, Xu Y, Terskikh A, Snyder EY, Ding S. Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 2009; 5(2): 204–213
CrossRef Pubmed Google scholar
[49]
Swaney DL, Wenger CD, Thomson JA, Coon JJ. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 2009; 106(4): 995–1000
CrossRef Pubmed Google scholar
[50]
Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 2011; 4(164): rs3
CrossRef Pubmed Google scholar
[51]
Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma’ayan A. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database (Oxford) 2013; 2013: bat045
CrossRef Pubmed Google scholar
[52]
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5(1): 111–123
CrossRef Pubmed Google scholar
[53]
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324(5928): 797–801
CrossRef Pubmed Google scholar
[54]
Van Hoof D, Muñoz J, Braam SR, Pinkse MWH, Linding R, Heck AJR, Mummery CL, Krijgsveld J. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 2009; 5(2): 214–226
CrossRef Pubmed Google scholar
[55]
Munoz J, Low TY, Kok YJ, Chin A, Frese CK, Ding V, Choo A, Heck AJR. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol 2011; 7: 550
CrossRef Pubmed Google scholar
[56]
Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, Carey M, Garcia BA, Plath K. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol 2013; 15(7): 872–882
CrossRef Pubmed Google scholar
[57]
Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V, Stewart R, Thomson JA, Coon JJ. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 2011; 8(10): 821–827
CrossRef Pubmed Google scholar
[58]
Perez-Iratxeta C, Palidwor G, Porter CJ, Sanche NA, Huska MR, Suomela BP, Muro EM, Krzyzanowski PM, Hughes E, Campbell PA, Rudnicki MA, Andrade MA. Study of stem cell function using microarray experiments. FEBS Lett 2005; 579(8): 1795–1801
CrossRef Pubmed Google scholar
[59]
Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang H, Neumann S, Tong W, Amaral-Zettler L, Begley K, Booth T, Bougueleret L, Burns G, Chapman B, Clark T, Coleman LA, Copeland J, Das S, de Daruvar A, de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P, Gilbert J, Goble C, Griffin JL, Jacob D, Kleinjans J, Harland L, Haug K, Hermjakob H, Ho Sui SJ, Laederach A, Liang S, Marshall S, McGrath A, Merrill E, Reilly D, Roux M, Shamu CE, Shang CA, Steinbeck C, Trefethen A, Williams-Jones B, Wolstencroft K, Xenarios I, Hide W. Toward interoperable bioscience data. Nat Genet 2012; 44(2): 121–126
CrossRef Pubmed Google scholar
[60]
Ho Sui SJ, Begley K, Reilly D, Chapman B, McGovern R, Rocca-Sera P, Maguire E, Altschuler GM, Hansen TAA, Sompallae R, Krivtsov A, Shivdasani RA, Armstrong SA, Culhane AC, Correll M, Sansone SA, Hofmann O, Hide W. The Stem Cell Discovery Engine: an integrated repository and analysis system for cancer stem cell comparisons. Nucleic Acids Res 2012; 40(Database issue): D984–D991
CrossRef Pubmed Google scholar
[61]
Jung M, Peterson H, Chavez L, Kahlem P, Lehrach H, Vilo J, Adjaye J. A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells. PLoS ONE 2010; 5(5): e10709
CrossRef Pubmed Google scholar
[62]
Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, Chen KG, Fann YC, McKay RDG. StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res (Amst) 2013; 10(1): 57–66
CrossRef Pubmed Google scholar
[63]
Costa V, Angelini C, De Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010; 2010: 853916.
[64]
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995; 270(5235): 484–487
CrossRef Pubmed Google scholar
[65]
Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 2007; 8(1): 6–21
CrossRef Pubmed Google scholar
[66]
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet 2008; 24(3): 133–141
CrossRef Pubmed Google scholar
[67]
Uchida S, Gellert P, Braun T. Deeply dissecting stemness: making sense to non-coding RNAs in stem cells. Stem Cell Rev 2012; 8(1): 78–86
CrossRef Pubmed Google scholar
[68]
Asmann YW, Wallace MB, Thompson EA. Transcriptome profiling using next-generation sequencing. Gastroenterology 2008; 135(5): 1466–1468
CrossRef Pubmed Google scholar
[69]
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10(3): R25
CrossRef Pubmed Google scholar
[70]
Jean G, Kahles A, Sreedharan VT, De Bona F, Ratsch G. RNA-Seq read alignments with PALMapper. Curr Protoc Bioinformatics 2010; Chapter 11: Unit 11 6
[71]
Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 2008; 24(20): 2395–2396
CrossRef Pubmed Google scholar
[72]
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 2010; 38(18): e178
CrossRef Pubmed Google scholar
[73]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25(14): 1754–1760
CrossRef Pubmed Google scholar
[74]
Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010; 28(5): 503–510
CrossRef Pubmed Google scholar
[75]
Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 2010; 38(14): 4570–4578
CrossRef Pubmed Google scholar
[76]
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 2011; 12(3): R22
CrossRef Pubmed Google scholar
[77]
Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008; 26(4): 407–415
CrossRef Pubmed Google scholar
[78]
Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N. miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 2010; 26(20): 2615–2616
CrossRef Pubmed Google scholar
[79]
Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 2011; 39(Web Server issue): W132–138
Pubmed
[80]
Huang PJ, Liu YC, Lee CC, Lin WC, Gan RRC, Lyu PC, Tang P. DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 2010; 38(Web Server issue): W385–391
Pubmed
[81]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15–20
CrossRef Pubmed Google scholar
[82]
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495–500
CrossRef Pubmed Google scholar
[83]
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36(Database issue): D149–D153
Pubmed
[84]
Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009; 37(Web Server issue): W273-276
Pubmed
[85]
Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics 2010; 73(11): 2064–2077
CrossRef Pubmed Google scholar
[86]
Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422(6928): 198–207
CrossRef Pubmed Google scholar
[87]
Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312(5771): 212–217
CrossRef Pubmed Google scholar
[88]
Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 2009; 6(2): 145–157
CrossRef Pubmed Google scholar
[89]
Novak A, Amit M, Ziv T, Segev H, Fishman B, Admon A, Itskovitz-Eldor J. Proteomics profiling of human embryonic stem cells in the early differentiation stage. Stem Cell Rev 2012; 8(1): 137–149
CrossRef Pubmed Google scholar
[90]
Gouw JW, Krijgsveld J. MSQuant: a platform for stable isotope-based quantitative proteomics. Methods Mol Biol 2012; 893: 511–522
CrossRef Pubmed Google scholar
[91]
Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R. A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 2004; 22(11): 1459–1466
CrossRef Pubmed Google scholar
[92]
Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 2008; 7(1): 51–61
CrossRef Pubmed Google scholar
[93]
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26(12): 1367–1372
CrossRef Pubmed Google scholar
[94]
Khan Z, Bloom JS, Garcia BA, Singh M, Kruglyak L. Protein quantification across hundreds of experimental conditions. Proc Natl Acad Sci USA 2009; 106(37): 15544–15548
CrossRef Pubmed Google scholar
[95]
Lin WT, Hung WN, Yian YH, Wu KP, Han CL, Chen YR, Chen YJ, Sung TY, Hsu WL. Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 2006; 5(9): 2328–2338
CrossRef Pubmed Google scholar
[96]
Shadforth IP, Dunkley TPJ, Lilley KS, Bessant C. i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 2005; 6(1): 145
CrossRef Pubmed Google scholar
[97]
Arntzen MO, Koehler CJ, Barsnes H, Berven FS, Treumann A, Thiede B. IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT. J Proteome Res 2011; 10(2): 913–920
CrossRef Pubmed Google scholar
[98]
Keller A, Eng J, Zhang N, Li XJ, Aebersold R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 2005; 1: 2005.0017
Pubmed
[99]
Brusniak MY, Bodenmiller B, Campbell D, Cooke K, Eddes J, Garbutt A, Lau H, Letarte S, Mueller LN, Sharma V, Vitek O, Zhang N, Aebersold R, Watts JD. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics 2008; 9(1): 542
CrossRef Pubmed Google scholar
[100]
Tsou CC, Tsai CF, Tsui YH, Sudhir PR, Wang YT, Chen YJ, Chen JY, Sung TY, Hsu WL. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 2010; 9(1): 131–144
CrossRef Pubmed Google scholar
[101]
Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KTG, Bunkenborg J, Cox J, Foster LJ, Heck AJR, Blagoev B, Andersen JS, Mann M. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 2010; 9(1): 393–403
CrossRef Pubmed Google scholar
[102]
Hokke CH, Fitzpatrick JM, Hoffmann KF. Integrating transcriptome, proteome and glycome analyses of Schistosoma biology. Trends Parasitol 2007; 23(4): 165–174
CrossRef Pubmed Google scholar
[103]
Nielsen JA, Lau P, Maric D, Barker JL, Hudson LD. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci 2009; 10(1): 98
CrossRef Pubmed Google scholar
[104]
Liu F, Lu J, Hu W, Wang SY, Cui SJ, Chi M, Yan Q, Wang XR, Song HD, Xu XN, Wang JJ, Zhang XL, Zhang X, Wang ZQ, Xue CL, Brindley PJ, McManus DP, Yang PY, Feng Z, Chen Z, Han ZG. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2006; 2(4): e29
CrossRef Pubmed Google scholar
[105]
Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, Camargo N, Daly TM, Bergman LW, Kappe SHI. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 2008; 105(1): 305–310
CrossRef Pubmed Google scholar
[106]
Unwin RD, Whetton AD. Systematic proteome and transcriptome analysis of stem cell populations. Cell Cycle 2006; 5(15): 1587–1591
CrossRef Pubmed Google scholar
[107]
Xu H, Lemischka IR, Ma’ayan A. SVM classifier to predict genes important for self-renewal and pluripotency of mouse embryonic stem cells. BMC Syst Biol 2010; 4(1): 173
CrossRef Pubmed Google scholar
[108]
Ho Sui SJ, Begley K, Reilly D, Chapman B, McGovern R, Rocca-Sera P, Maguire E, Altschuler GM, Hansen TA, Sompallae R, Krivtsov A, Shivdasani RA, Armstrong SA, Culhane AC, Correll M, Sansone SA, Hofmann O, Hide W. The Stem Cell Discovery Engine: an integrated repository and analysis system for cancer stem cell comparisons. Nucleic Acids Res 2012; 40(Database issue): D984–D991
CrossRef Pubmed Google scholar

Acknowledgements

The authors thank Dr. Yuxia Jiao for critically reading the manuscript. This research was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Research (XDA01040405 to X.F.), National Key Scientific Instrument and Equipment Development Projects of China (2011YQ03013404 to X.F.), National High Technology Research and Development Program of China (863 Program, 2012AA022502 to X.F.).

Compliance with ethics guidelines

Hai Wang, Qian Zhang, and Xiangdong Fang declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(690 KB)

Accesses

Citations

Detail

Sections
Recommended

/