Generation and repair of AID-initiated DNA lesions in B lymphocytes

Zhangguo Chen , Jing H. Wang

Front. Med. ›› 2014, Vol. 8 ›› Issue (2) : 201 -216.

PDF (440KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (2) : 201 -216. DOI: 10.1007/s11684-014-0324-4
REVIEW
REVIEW

Generation and repair of AID-initiated DNA lesions in B lymphocytes

Author information +
History +
PDF (440KB)

Abstract

Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.

Keywords

class switch recombination / somatic hypermutation / activation-induced deaminase / DNA repair / genomic instability

Cite this article

Download citation ▾
Zhangguo Chen, Jing H. Wang. Generation and repair of AID-initiated DNA lesions in B lymphocytes. Front. Med., 2014, 8(2): 201-216 DOI:10.1007/s11684-014-0324-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GaneshK, NeubergerMS. The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J2011; 25(4): 1123–1132

[2]

KatoL, StanlieA, BegumNA, KobayashiM, AidaM, HonjoT. An evolutionary view of the mechanism for immune and genome diversity. J Immunol2012; 188(8): 3559–3566

[3]

WangJH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res2013; 55(1-3): 287–297

[4]

MuramatsuM, KinoshitaK, FagarasanS, YamadaS, ShinkaiY, HonjoT. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell2000; 102(5): 553–563

[5]

Di NoiaJM, NeubergerMS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem2007; 76(1): 1–22

[6]

ChahwanR, EdelmannW, ScharffMD, RoaS. AIDing antibody diversity by error-prone mismatch repair. Semin Immunol2012; 24(4): 293–300

[7]

ChaudhuriJ, BasuU, ZarrinA, YanC, FrancoS, PerlotT, VuongB, WangJ, PhanRT, DattaA, ManisJ, AltFW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol2007; 94: 157–214

[8]

StavnezerJ. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol2011; 32(5): 194–201

[9]

AltFW, ZhangY, MengFL, GuoC, SchwerB. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell2013; 152(3): 417–429

[10]

DanielJA, NussenzweigA. The AID-induced DNA damage response in chromatin. Mol Cell2013; 50(3): 309–321

[11]

NussenzweigA, NussenzweigMC. Origin of chromosomal translocations in lymphoid cancer. Cell2010; 141(1): 27–38

[12]

JungD, AltFW. Unraveling V(D)J recombination; insights into gene regulation. Cell2004; 116(2): 299–311

[13]

HackneyJA, MisaghiS, SengerK, GarrisC, SunY, LorenzoMN, ZarrinAA. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol2009; 101: 163–189

[14]

ChaudhuriJ, AltFW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol2004; 4(7): 541–552

[15]

BoboilaC, AltFW, SchwerB. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol2012; 116: 1–49

[16]

FuYX, ChaplinDD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol1999; 17(1): 399–433

[17]

HonjoT, KinoshitaK, MuramatsuM. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol2002; 20(1): 165–196

[18]

MacLennanIC. Germinal centers. Annu Rev Immunol1994; 12(1): 117–139

[19]

MacLennanIC, ToellnerKM, CunninghamAF, SerreK, SzeDM, ZúñigaE, CookMC, VinuesaCG. Extrafollicular antibody responses. Immunol Rev2003; 194(1): 8–18

[20]

StavnezerJ, GuikemaJE, SchraderCE. Mechanism and regulation of class switch recombination. Annu Rev Immunol2008; 26(1): 261–292

[21]

NagaokaH, MuramatsuM, YamamuraN, KinoshitaK, HonjoT. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med2002; 195(4): 529–534

[22]

Reina-San-MartinB, DifilippantonioS, HanitschL, MasilamaniRF, NussenzweigA, NussenzweigMC. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med2003; 197(12): 1767–1778

[23]

ShafferAL, RosenwaldA, HurtEM, GiltnaneJM, LamLT, PickeralOK, StaudtLM. Signatures of the immune response. Immunity2001; 15(3): 375–385

[24]

LiangG, KitamuraK, WangZ, LiuG, ChowdhuryS, FuW, KouraM, WakaeK, HonjoT, MuramatsuM. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci USA2013; 110(6): 2246–2251

[25]

NeubergerMS, HarrisRS, Di NoiaJ, Petersen-MahrtSK. Immunity through DNA deamination. Trends Biochem Sci2003; 28(6): 305–312

[26]

BransteitterR, PhamP, ScharffMD, GoodmanMF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA2003; 100(7): 4102–4107

[27]

ChaudhuriJ, KhuongC, AltFW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature2004; 430(7003): 992–998

[28]

ChaudhuriJ, TianM, KhuongC, ChuaK, PinaudE, AltFW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature2003; 422(6933): 726–730

[29]

DickersonSK, MarketE, BesmerE, PapavasiliouFN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med2003; 197(10): 1291–1296

[30]

PhamP, BransteitterR, PetruskaJ, GoodmanMF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature2003; 424(6944): 103–107

[31]

RamiroAR, StavropoulosP, JankovicM, NussenzweigMC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol2003; 4(5): 452–456

[32]

SohailA, KlapaczJ, SamaranayakeM, UllahA, BhagwatAS. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res2003; 31(12): 2990–2994

[33]

TianM, AltFW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem2000; 275(31): 24163–24172

[34]

YuK, ChedinF, HsiehCL, WilsonTE, LieberMR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol2003; 4(5): 442–451

[35]

MasukataH, TomizawaJ. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell1990; 62(2): 331–338

[36]

LeeDY, ClaytonDA. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem1996; 271(39): 24262–24269

[37]

MartomoSA, YangWW, GearhartPJ. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med2004; 200(1): 61–68

[38]

NeubergerMS, RadaC. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T. J Exp Med2007; 204(1): 7–10

[39]

RadaC, Di NoiaJM, NeubergerMS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell2004; 16(2): 163–171

[40]

RadaC, EhrensteinMR, NeubergerMS, MilsteinC. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity1998; 9(1): 135–141

[41]

RadaC, WilliamsGT, NilsenH, BarnesDE, LindahlT, NeubergerMS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol2002; 12(20): 1748–1755

[42]

ShenHM, TanakaA, BozekG, NicolaeD, StorbU. Somatic hypermutation and class switch recombination in Msh6(-/-)Ung(-/-) double-knockout mice. J Immunol2006; 177(8): 5386–5392

[43]

XueK, RadaC, NeubergerMS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/- mice. J Exp Med2006; 203(9): 2085–2094

[44]

GuikemaJE, LinehanEK, TsuchimotoD, NakabeppuY, StraussPR, StavnezerJ, SchraderCE. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med2007; 204(12): 3017–3026

[45]

SabouriZ, OkazakiIM, ShinkuraR, BegumN, NagaokaH, TsuchimotoD, NakabeppuY, HonjoT. Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int Immunol2009; 21(8): 947–955

[46]

SchraderCE1, GuikemaJE, WuX, StavnezerJ. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1517) 645–652

[47]

LudwigDL, MacInnesMA, TakiguchiY, PurtymunPE, HenrieM, FlanneryM, MenesesJ, PedersenRA, ChenDJ. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res1998; 409(1): 17–29

[48]

XanthoudakisS, SmeyneRJ, WallaceJD, CurranT. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA1996; 93(17): 8919–8923

[49]

MasaniS, HanL, YuK. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol2013; 33(7): 1468–1473

[50]

ChahwanR, van OersJM, AvdievichE, ZhaoC, EdelmannW, ScharffMD, RoaS. The ATPase activity of MLH1 is required to orchestrate DNA double-strand breaks and end processing during class switch recombination. J Exp Med2012; 209(4): 671–678

[51]

LongerichS, BasuU, AltF, StorbU. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol2006; 18(2): 164–174

[52]

OdegardVH, SchatzDG. Targeting of somatic hypermutation. Nat Rev Immunol2006; 6(8): 573–583

[53]

LiuM, DukeJL, RichterDJ, VinuesaCG, GoodnowCC, KleinsteinSH, SchatzDG. Two levels of protection for the B cell genome during somatic hypermutation. Nature2008; 451(7180): 841–845

[54]

PasqualucciL, MigliazzaA, FracchiollaN, WilliamC, NeriA, BaldiniL, ChagantiRS, KleinU, KüppersR, RajewskyK, Dalla-FaveraR. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA1998; 95(20): 11816–11821

[55]

ShenHM, PetersA, BaronB, ZhuX, StorbU. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science1998; 280(5370): 1750–1752

[56]

PengHZ, DuMQ, KoulisA, AielloA, DoganA, PanLX, IsaacsonPG. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood1999; 93(7): 2167–2172

[57]

StorbU, ShenHM, MichaelN, KimN. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci2001; 356(1405): 13–19

[58]

GordonMS, KanegaiCM, DoerrJR, WallR. Somatic hypermutation of the B cell receptor genes B29 (Igβ CD79b) and mb1 (Igα CD79a). Proc Natl Acad Sci USA2003; 100(7): 4126–4131

[59]

DelkerRK, FugmannSD, PapavasiliouFN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol2009; 10(11): 1147–1153

[60]

RogozinIB, KolchanovNA. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta1992; 1171(1): 11–18

[61]

RogozinIB, PavlovYI, BebenekK, MatsudaT, KunkelTA. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol2001; 2(6): 530–536

[62]

KlotzEL, HackettJ Jr, StorbU. Somatic hypermutation of an artificial test substrate within an Igκ transgene. J Immunol1998; 161(2): 782–790

[63]

StorbU, KlotzEL, HackettJ Jr, KageK, BozekG, MartinTE. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med1998; 188(4): 689–698

[64]

MichaelN, MartinTE, NicolaeD, KimN, PadjenK, ZhanP, NguyenH, PinkertC, StorbU. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity2002; 16(1): 123–134

[65]

YélamosJ, KlixN, GoyenecheaB, LozanoF, ChuiYL, González FernándezA, PannellR, NeubergerMS, MilsteinC. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature1995; 376(6537): 225–229

[66]

JollyCJ, NeubergerMS. Somatic hypermutation of immunoglobulin κ transgenes: association of mutability with demethylation. Immunol Cell Biol2001; 79(1): 18–22

[67]

ChenZ, ViboolsittiseriSS, O’ConnorBP, WangJH. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. J Immunol2012; 189(8): 3970–3982

[68]

MutoT, OkazakiIM, YamadaS, TanakaY, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci USA2006; 103(8): 2752–2757

[69]

WangL, WuerffelR, FeldmanS, KhamlichiAA, KenterAL. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med2009; 206(8): 1817–1830

[70]

PavriR, GazumyanA, JankovicM, Di VirgilioM, KleinI, Ansarah-SobrinhoC, ReschW, YamaneA, Reina San-MartinB, BarretoV, NielandTJ, RootDE, CasellasR, NussenzweigMC. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell2010; 143(1): 122–133

[71]

StanlieA, AidaM, MuramatsuM, HonjoT, BegumNA. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc Natl Acad Sci USA2010; 107(51): 22190–22195

[72]

DanielJA, SantosMA, WangZ, ZangC, SchwabKR, JankovicM, FilsufD, ChenHT, GazumyanA, YamaneA, ChoYW, SunHW, GeK, PengW, NussenzweigMC, CasellasR, DresslerGR, ZhaoK, NussenzweigA. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science2010; 329(5994): 917–923

[73]

Jeevan-RajBP, RobertI, HeyerV, PageA, WangJH, CammasF, AltFW, LossonR, Reina-San-MartinB. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med2011; 208(8): 1649–1660

[74]

YamaneA, ReschW, KuoN, KuchenS, LiZ, SunHW, RobbianiDF, McBrideK, NussenzweigMC, CasellasR. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol2011; 12(1): 62–69

[75]

BetzAG, MilsteinC, González-FernándezA, PannellR, LarsonT, NeubergerMS. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell1994; 77(2): 239–248

[76]

InlayMA, GaoHH, OdegardVH, LinT, SchatzDG, XuY. Roles of the Igκ light chain intronic and 3′ enhancers in Igk somatic hypermutation. J Immunol2006; 177(2): 1146–1151

[77]

KothapalliNR, FugmannSD. Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol2011; 23(2): 184–189

[78]

PerlotT, AltFW, BassingCH, SuhH, PinaudE. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA2005; 102(40): 14362–14367

[79]

FukitaY, JacobsH, RajewskyK. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity1998; 9(1): 105–114

[80]

KothapalliNR, ColluraKM, NortonDD, FugmannSD. Separation of mutational and transcriptional enhancers in Ig genes. J Immunol2011; 187(6): 3247–3255

[81]

KothapalliNR, NortonDD, FugmannSD. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells. PLoS ONE2011; 6(4): e18955

[82]

StorbU, PetersA, KlotzE, KimN, ShenHM, HackettJ, RogersonB, MartinTE. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev1998; 162(1): 153–160

[83]

KodgireP, MukkawarP, RatnamS, MartinTE, StorbU. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J Exp Med2013; 210(7): 1481–1492

[84]

AidaM, HamadN, StanlieA, BegumNA, HonjoT. Accumulation of the FACT complex, as well as histone H3.3, serves as a target marker for somatic hypermutation. Proc Natl Acad Sci USA2013; 110(19): 7784–7789

[85]

MorvanCL, PinaudE, DecourtC, CuvillierA, CognéM. The immunoglobulin heavy-chain locus hs3b and hs4 3′ enhancers are dispensable for VDJ assembly and somatic hypermutation. Blood2003; 102(4): 1421–1427

[86]

RouaudP, Vincent-FabertC, SaintamandA, FiancetteR, MarquetM, RobertI, Reina-San-MartinB, PinaudE, CognéM, DenizotY. The IgH 3′ regulatory region controls somatic hypermutation in germinal center B cells. J Exp Med2013; 210(8): 1501–1507

[87]

McDonaldJJ, AlinikulaJ, BuersteddeJM, SchatzDG. A critical context-dependent role for E boxes in the targeting of somatic hypermutation. J Immunol2013; 191(4): 1556–1566

[88]

KohlerKM, McDonaldJJ, DukeJL, ArakawaH, TanS, KleinsteinSH, BuersteddeJM, SchatzDG. Identification of core DNA elements that target somatic hypermutation. J Immunol2012; 189(11): 5314–5326

[89]

BlagodatskiA, BatrakV, SchmidlS, SchoetzU, CaldwellRB, ArakawaH, BuersteddeJM. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet2009; 5(1): e1000332

[90]

KothapalliN, NortonDD, FugmannSD. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol2008; 180(4): 2019–2023

[91]

TanakaA, ShenHM, RatnamS, KodgireP, StorbU. Attracting AID to targets of somatic hypermutation. J Exp Med2010; 207(2): 405–415

[92]

GazumyanA, BothmerA, KleinIA, NussenzweigMC, McBrideKM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res2012; 113: 167–190

[93]

KüppersR, Dalla-FaveraR. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene2001; 20(40): 5580–5594

[94]

JanzS. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst)2006; 5(9-10): 1213–1224

[95]

KüppersR. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer2005; 5(4): 251–262

[96]

ShenHM, MichaelN, KimN, StorbU. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int Immunol2000; 12(7): 1085–1093

[97]

CaladoDP, SasakiY, GodinhoSA, PellerinA, KöchertK, SleckmanBP, de AlboránIM, JanzM, RodigS, RajewskyK. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol2012; 13(11): 1092–1100

[98]

ShilohY. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer2003; 3(3): 155–168

[99]

ShilohY, ZivY. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol2013; 14(4): 197–210

[100]

BassingCH, AltFW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle2004; 3(2): 149–153

[101]

FrancoS, AltFW, ManisJP. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst)2006; 5(9-10): 1030–1041

[102]

RogakouEP, PilchDR, OrrAH, IvanovaVS, BonnerWM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem1998; 273(10): 5858–5868

[103]

ChapmanJR, BarralP, VannierJB, BorelV, StegerM, Tomas-LobaA, SartoriAA, AdamsIR, BatistaFD, BoultonSJ. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell2013; 49(5): 858–871

[104]

Di VirgilioM, CallenE, YamaneA, ZhangW, JankovicM, GitlinAD, FeldhahnN, ReschW, OliveiraTY, ChaitBT, NussenzweigA, CasellasR, RobbianiDF, NussenzweigMC. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science2013; 339(6120): 711–715

[105]

Escribano-DíazC, OrthweinA, Fradet-TurcotteA, XingM, YoungJT, TkáčJ, CookMA, RosebrockAP, MunroM, CannyMD, XuD, DurocherD. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell2013; 49(5): 872–883

[106]

FrancoS, GostissaM, ZhaS, LombardDB, MurphyMM, ZarrinAA, YanC, TepsupornS, MoralesJC, AdamsMM, LouZ, BassingCH, ManisJP, ChenJ, CarpenterPB, AltFW. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell2006; 21(2): 201–214

[107]

RamiroAR, JankovicM, CallenE, DifilippantonioS, ChenHT, McBrideKM, EisenreichTR, ChenJ, DickinsRA, LoweSW, NussenzweigA, NussenzweigMC. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature2006; 440(7080): 105–109

[108]

ManisJP, MoralesJC, XiaZ, KutokJL, AltFW, CarpenterPB. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol2004; 5(5): 481–487

[109]

WardIM, Reina-San-MartinB, OlaruA, MinnK, TamadaK, LauJS, CascalhoM, ChenL, NussenzweigA, LivakF, NussenzweigMC, ChenJ. 53BP1 is required for class switch recombination. J Cell Biol2004; 165(4): 459–464

[110]

Reina-San-MartinB, ChenJ, NussenzweigA, NussenzweigMC. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol2007; 37(1): 235–239

[111]

BothmerA, RobbianiDF, Di VirgilioM, BuntingSF, KleinIA, FeldhahnN, BarlowJ, ChenHT, BosqueD, CallenE, NussenzweigA, NussenzweigMC. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell2011; 42(3): 319–329

[112]

BothmerA, RobbianiDF, FeldhahnN, GazumyanA, NussenzweigA, NussenzweigMC. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med2010; 207(4): 855–865

[113]

ChapmanJR, TaylorMR, BoultonSJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell2012; 47(4): 497–510

[114]

BothmerA, RommelPC, GazumyanA, PolatoF, ReczekCR, MuellenbeckMF, SchaetzleinS, EdelmannW, ChenPL, BroshRM Jr, CasellasR, LudwigT, BaerR, NussenzweigA, NussenzweigMC, RobbianiDF. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J Exp Med2013; 210(1): 115–123

[115]

StavnezerJ, BjörkmanA, DuL, CagigiA, Pan-HammarströmQ. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol2010; 108: 45–109

[116]

LieberMR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem2010; 79(1): 181–211

[117]

LieberMR, GuJ, LuH, ShimazakiN, TsaiAG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem2010; 50: 279–296

[118]

WeinstockDM, RichardsonCA, ElliottB, JasinM. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst)2006; 5(9-10): 1065–1074

[119]

WestSC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol2003; 4(6): 435–445

[120]

SymingtonLS, GautierJ. Double-strand break end resection and repair pathway choice. Annu Rev Genet2011; 45(1): 247–271

[121]

CallenE, Di VirgilioM, KruhlakMJ, Nieto-SolerM, WongN, ChenHT, FaryabiRB, PolatoF, SantosM, StarnesLM, WesemannDR, LeeJE, TubbsA, SleckmanBP, DanielJA, GeK, AltFW, Fernandez-CapetilloO, NussenzweigMC, NussenzweigA. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell2013; 153(6): 1266–1280

[122]

RooneyS, ChaudhuriJ, AltFW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev2004; 200(1): 115–131

[123]

RothDB. Restraining the V(D)J recombinase. Nat Rev Immunol2003; 3(8): 656–666

[124]

YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature2007; 449(7161): 478–482

[125]

WangJH, GostissaM, YanCT, GoffP, HickernellT, HansenE, DifilippantonioS, WesemannDR, ZarrinAA, RajewskyK, NussenzweigA, AltFW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature2009; 460(7252): 231–236

[126]

BoboilaC, YanC, WesemannDR, JankovicM, WangJH, ManisJ, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med2010; 207(2): 417–427

[127]

BoboilaC, JankovicM, YanCT, WangJH, WesemannDR, ZhangT, FazeliA, FeldmanL, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA2010; 107(7): 3034–3039

[128]

DifilippantonioMJ, PetersenS, ChenHT, JohnsonR, JasinM, KanaarR, RiedT, NussenzweigA. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med2002; 196(4): 469–480

[129]

RooneyS, SekiguchiJ, WhitlowS, EckersdorffM, ManisJP, LeeC, FergusonDO, AltFW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA2004; 101(8): 2410–2415

[130]

WangJH, AltFW, GostissaM, DattaA, MurphyM, AlimzhanovMB, CoakleyKM, RajewskyK, ManisJP, YanCT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med2008; 205(13): 3079–3090

[131]

ZhuC, MillsKD, FergusonDO, LeeC, ManisJ, FlemingJ, GaoY, MortonCC, AltFW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell2002; 109(7): 811–821

[132]

McVeyM, LeeSE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet2008; 24(11): 529–538

[133]

DerianoL, StrackerTH, BakerA, PetriniJH, RothDB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell2009; 34(1): 13–25

[134]

DinkelmannM, SpehalskiE, StonehamT, BuisJ, WuY, SekiguchiJM, FergusonDO. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol2009; 16(8): 808–813

[135]

RassE, GrabarzA, PloI, GautierJ, BertrandP, LopezBS. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol2009; 16(8): 819–824

[136]

XieA, KwokA, ScullyR. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol2009; 16(8): 814–818

[137]

Lee-TheilenM, MatthewsAJ, KellyD, ZhengS, ChaudhuriJ. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol2011; 18(1): 75–79

[138]

ZhangY, JasinM. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol2011; 18(1): 80–84

[139]

Della-MariaJ, ZhouY, TsaiMS, KuhnleinJ, CarneyJP, PaullTT, TomkinsonAE. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J Biol Chem2011; 286(39): 33845–33853

[140]

SaribasakH, MaulRW, CaoZ, McClureRL, YangW, McNeillDR, WilsonDM 3rd, GearhartPJ. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. J Exp Med2011; 208(11): 2209–2216

[141]

SimsekD, BrunetE, WongSY, KatyalS, GaoY, McKinnonPJ, LouJ, ZhangL, LiJ, RebarEJ, GregoryPD, HolmesMC, JasinM. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet2011; 7(6): e1002080

[142]

CaldecottKW. XRCC1 and DNA strand break repair. DNA Repair (Amst)2003; 2(9): 955–969

[143]

BoboilaC, OksenychV, GostissaM, WangJH, ZhaS, ZhangY, ChaiH, LeeCS, JankovicM, SaezLM, NussenzweigMC, McKinnonPJ, AltFW, SchwerB. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci USA2012; 109(7): 2473–2478

[144]

JungD, GiallourakisC, Mostoslavs kyR, AltFW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol2006; 24(1): 541–570

[145]

WangJH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med2012; 6(3): 263–274

[146]

RamiroAR, JankovicM, EisenreichT, DifilippantonioS, Chen-KiangS, MuramatsuM, HonjoT, NussenzweigA, NussenzweigMC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell2004; 118(4): 431–438

[147]

PasqualucciL, NeumeisterP, GoossensT, NanjangudG, ChagantiRS, KüppersR, Dalla-FaveraR. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature2001; 412(6844): 341–346

[148]

OhnoH. Pathogenetic and clinical implications of non-immunoglobulin; BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematop2006; 46(2): 43–53

[149]

BertrandP, BastardC, MaingonnatC, JardinF, MaisonneuveC, CourelMN, RuminyP, PicquenotJM, TillyH. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia2007; 21(3): 515–523

[150]

RobbianiDF, BothmerA, CallenE, Reina-San-MartinB, DorsettY, DifilippantonioS, BollandDJ, ChenHT, CorcoranAE, NussenzweigA, NussenzweigMC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell2008; 135(6): 1028–1038

[151]

RobbianiDF, BuntingS, FeldhahnN, BothmerA, CampsJ, DeroubaixS, McBrideKM, KleinIA, StoneG, EisenreichTR, RiedT, NussenzweigA, NussenzweigMC. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell2009; 36(4): 631–641

[152]

ChiarleR, ZhangY, FrockRL, LewisSM, MolinieB, HoYJ, MyersDR, ChoiVW, CompagnoM, MalkinDJ, NeubergD, MontiS, GiallourakisCC, GostissaM, AltFW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell2011; 147(1): 107–119

[153]

KleinIA, ReschW, JankovicM, OliveiraT, YamaneA, NakahashiH, Di VirgilioM, BothmerA, NussenzweigA, RobbianiDF, CasellasR, NussenzweigMC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell2011; 147(1): 95–106

[154]

StaszewskiO, BakerRE, UcherAJ, MartierR, StavnezerJ, GuikemaJE. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell2011; 41(2): 232–242

[155]

MuramatsuM, SankaranandVS, AnantS, SugaiM, KinoshitaK, DavidsonNO, HonjoT. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem1999; 274(26): 18470–18476

[156]

CrouchEE, LiZ, TakizawaM, Fichtner-FeiglS, GourziP, MontañoC, FeigenbaumL, WilsonP, JanzS, PapavasiliouFN, CasellasR. Regulation of AID expression in the immune response. J Exp Med2007; 204(5): 1145–1156

[157]

GourziP, LeonovaT, PapavasiliouFN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity2006; 24(6): 779–786

[158]

SzczylikC, SkorskiT, NicolaidesNC, ManzellaL, MalaguarneraL, VenturelliD, GewirtzAM, CalabrettaB. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science1991; 253(5019): 562–565

[159]

Van EttenRA, JacksonP, BaltimoreD. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell1989; 58(4): 669–678

[160]

Quintás-CardamaA, CortesJ. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood2009; 113(8): 1619–1630

[161]

FeldhahnN, HenkeN, MelchiorK, DuyC, SohBN, KleinF, von LevetzowG, GiebelB, LiA, HofmannWK, JumaaH, MüschenM. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med2007; 204(5): 1157–1166

[162]

KlemmL, DuyC, IacobucciI, KuchenS, von LevetzowG, FeldhahnN, HenkeN, LiZ, HoffmannTK, KimYM, HofmannWK, JumaaH, GroffenJ, HeisterkampN, MartinelliG, LieberMR, CasellasR, MüschenM. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell2009; 16(3): 232–245

[163]

GruberTA, ChangMS, SpostoR, MüschenM. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res2010; 70(19): 7411–7420

[164]

YoshikawaK, OkazakiIM, EtoT, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science2002; 296(5575): 2033–2036

[165]

OkazakiIM, HiaiH, KakazuN, YamadaS, MuramatsuM, KinoshitaK, HonjoT. Constitutive expression of AID leads to tumorigenesis. J Exp Med2003; 197(9): 1173–1181

[166]

MorrisDS, TomlinsSA, MontieJE, ChinnaiyanAM. The discovery and application of gene fusions in prostate cancer. BJU Int2008; 102(3): 276–282

[167]

ManoH. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci2008; 99(12): 2349–2355

[168]

LinC, YangL, TanasaB, HuttK, JuBG, OhgiK, ZhangJ, RoseDW, FuXD, GlassCK, RosenfeldMG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell2009; 139(6): 1069–1083

[169]

MatsumotoY, MarusawaH, KinoshitaK, EndoY, KouT, MorisawaT, AzumaT, OkazakiIM, HonjoT, ChibaT. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med2007; 13(4): 470–476

[170]

MuñozDP, LeeEL, TakayamaS, CoppéJP, HeoSJ, BoffelliD, Di NoiaJM, MartinDI. Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci USA2013; 110(32): E2977–E2986

[171]

KumarR, DiMennaL, SchrodeN, LiuTC, FranckP, Muñoz-DescalzoS, HadjantonakisAK, ZarrinAA, ChaudhuriJ, ElementoO, EvansT. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature2013; 500(7460): 89–92

[172]

BhutaniN, DeckerMN, BradyJJ, BussatRT, BurnsDM, CorbelSY, BlauHM. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J2013; 27(3): 1107–1113

[173]

PoppC, DeanW, FengS, CokusSJ, AndrewsS, PellegriniM, JacobsenSE, ReikW. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature2010; 463(7284): 1101–1105

[174]

BhutaniN, BradyJJ, DamianM, SaccoA, CorbelSY, BlauHM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature2010; 463(7284): 1042–1047

[175]

HogenbirkMA, HeidemanMR, VeldsA, van den BerkPC, KerkhovenRM, van SteenselB, JacobsH. Differential programming of B cells in AID deficient mice. PLoS ONE2013; 8(7): e69815

[176]

HogenbirkMA, VeldsA, KerkhovenRM, JacobsH. Reassessing genomic targeting of AID. Nat Immunol2012; 13(9): 797–798, author reply 798–800

[177]

VuongBQ, LeeM, KabirS, IrimiaC, MacchiaruloS, McKnightGS, ChaudhuriJ. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat Immunol2009; 10(4): 420–426

[178]

BasuU, ChaudhuriJ, AlpertC, DuttS, RanganathS, LiG, SchrumJP, ManisJP, AltFW. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature2005; 438(7067): 508–511

[179]

ChengHL, VuongBQ, BasuU, FranklinA, SchwerB, AstaritaJ, PhanRT, DattaA, ManisJ, AltFW, ChaudhuriJ. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci USA2009; 106(8): 2717–2722

[180]

HakimO, ReschW, YamaneA, KleinI, Kieffer-KwonKR, JankovicM, OliveiraT, BothmerA, VossTC, Ansarah-SobrinhoC, MatheE, LiangG, CobellJ, NakahashiH, RobbianiDF, NussenzweigA, HagerGL, NussenzweigMC, CasellasR. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature2012; 484(7392): 69–74

[181]

RochaPP, MicsinaiM, KimJR, HewittSL, SouzaPP, TrimarchiT, StrinoF, ParisiF, KlugerY, SkokJA. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol Cell2012; 47(6): 873–885

[182]

ZhangY, McCordRP, HoYJ, LajoieBR, HildebrandDG, SimonAC, BeckerMS, AltFW, DekkerJ. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell2012; 148(5): 908–921

[183]

GramlichHS, ReisbigT, SchatzDG. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells. PLoS ONE2012; 7(6): e39601

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (440KB)

2751

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/