Generation and repair of AID-initiated DNA lesions in B lymphocytes

Zhangguo Chen, Jing H. Wang

PDF(440 KB)
PDF(440 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (2) : 201-216. DOI: 10.1007/s11684-014-0324-4
REVIEW
REVIEW

Generation and repair of AID-initiated DNA lesions in B lymphocytes

Author information +
History +

Abstract

Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.

Keywords

class switch recombination / somatic hypermutation / activation-induced deaminase / DNA repair / genomic instability

Cite this article

Download citation ▾
Zhangguo Chen, Jing H. Wang. Generation and repair of AID-initiated DNA lesions in B lymphocytes. Front. Med., 2014, 8(2): 201‒216 https://doi.org/10.1007/s11684-014-0324-4

References

[1]
GaneshK, NeubergerMS. The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J2011; 25(4): 1123–1132
CrossRef Pubmed Google scholar
[2]
KatoL, StanlieA, BegumNA, KobayashiM, AidaM, HonjoT. An evolutionary view of the mechanism for immune and genome diversity. J Immunol2012; 188(8): 3559–3566
CrossRef Pubmed Google scholar
[3]
WangJH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res2013; 55(1-3): 287–297
CrossRef Pubmed Google scholar
[4]
MuramatsuM, KinoshitaK, FagarasanS, YamadaS, ShinkaiY, HonjoT. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell2000; 102(5): 553–563
CrossRef Pubmed Google scholar
[5]
Di NoiaJM, NeubergerMS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem2007; 76(1): 1–22
CrossRef Pubmed Google scholar
[6]
ChahwanR, EdelmannW, ScharffMD, RoaS. AIDing antibody diversity by error-prone mismatch repair. Semin Immunol2012; 24(4): 293–300
CrossRef Pubmed Google scholar
[7]
ChaudhuriJ, BasuU, ZarrinA, YanC, FrancoS, PerlotT, VuongB, WangJ, PhanRT, DattaA, ManisJ, AltFW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol2007; 94: 157–214
CrossRef Pubmed Google scholar
[8]
StavnezerJ. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol2011; 32(5): 194–201
CrossRef Pubmed Google scholar
[9]
AltFW, ZhangY, MengFL, GuoC, SchwerB. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell2013; 152(3): 417–429
CrossRef Pubmed Google scholar
[10]
DanielJA, NussenzweigA. The AID-induced DNA damage response in chromatin. Mol Cell2013; 50(3): 309–321
CrossRef Pubmed Google scholar
[11]
NussenzweigA, NussenzweigMC. Origin of chromosomal translocations in lymphoid cancer. Cell2010; 141(1): 27–38
CrossRef Pubmed Google scholar
[12]
JungD, AltFW. Unraveling V(D)J recombination; insights into gene regulation. Cell2004; 116(2): 299–311
CrossRef Pubmed Google scholar
[13]
HackneyJA, MisaghiS, SengerK, GarrisC, SunY, LorenzoMN, ZarrinAA. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol2009; 101: 163–189
CrossRef Pubmed Google scholar
[14]
ChaudhuriJ, AltFW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol2004; 4(7): 541–552
CrossRef Pubmed Google scholar
[15]
BoboilaC, AltFW, SchwerB. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol2012; 116: 1–49
CrossRef Pubmed Google scholar
[16]
FuYX, ChaplinDD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol1999; 17(1): 399–433
CrossRef Pubmed Google scholar
[17]
HonjoT, KinoshitaK, MuramatsuM. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol2002; 20(1): 165–196
CrossRef Pubmed Google scholar
[18]
MacLennanIC. Germinal centers. Annu Rev Immunol1994; 12(1): 117–139
CrossRef Pubmed Google scholar
[19]
MacLennanIC, ToellnerKM, CunninghamAF, SerreK, SzeDM, ZúñigaE, CookMC, VinuesaCG. Extrafollicular antibody responses. Immunol Rev2003; 194(1): 8–18
CrossRef Pubmed Google scholar
[20]
StavnezerJ, GuikemaJE, SchraderCE. Mechanism and regulation of class switch recombination. Annu Rev Immunol2008; 26(1): 261–292
CrossRef Pubmed Google scholar
[21]
NagaokaH, MuramatsuM, YamamuraN, KinoshitaK, HonjoT. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med2002; 195(4): 529–534
CrossRef Pubmed Google scholar
[22]
Reina-San-MartinB, DifilippantonioS, HanitschL, MasilamaniRF, NussenzweigA, NussenzweigMC. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med2003; 197(12): 1767–1778
CrossRef Pubmed Google scholar
[23]
ShafferAL, RosenwaldA, HurtEM, GiltnaneJM, LamLT, PickeralOK, StaudtLM. Signatures of the immune response. Immunity2001; 15(3): 375–385
CrossRef Pubmed Google scholar
[24]
LiangG, KitamuraK, WangZ, LiuG, ChowdhuryS, FuW, KouraM, WakaeK, HonjoT, MuramatsuM. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci USA2013; 110(6): 2246–2251
CrossRef Pubmed Google scholar
[25]
NeubergerMS, HarrisRS, Di NoiaJ, Petersen-MahrtSK. Immunity through DNA deamination. Trends Biochem Sci2003; 28(6): 305–312
CrossRef Pubmed Google scholar
[26]
BransteitterR, PhamP, ScharffMD, GoodmanMF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA2003; 100(7): 4102–4107
CrossRef Pubmed Google scholar
[27]
ChaudhuriJ, KhuongC, AltFW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature2004; 430(7003): 992–998
CrossRef Pubmed Google scholar
[28]
ChaudhuriJ, TianM, KhuongC, ChuaK, PinaudE, AltFW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature2003; 422(6933): 726–730
CrossRef Pubmed Google scholar
[29]
DickersonSK, MarketE, BesmerE, PapavasiliouFN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med2003; 197(10): 1291–1296
CrossRef Pubmed Google scholar
[30]
PhamP, BransteitterR, PetruskaJ, GoodmanMF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature2003; 424(6944): 103–107
CrossRef Pubmed Google scholar
[31]
RamiroAR, StavropoulosP, JankovicM, NussenzweigMC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol2003; 4(5): 452–456
CrossRef Pubmed Google scholar
[32]
SohailA, KlapaczJ, SamaranayakeM, UllahA, BhagwatAS. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res2003; 31(12): 2990–2994
CrossRef Pubmed Google scholar
[33]
TianM, AltFW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem2000; 275(31): 24163–24172
CrossRef Pubmed Google scholar
[34]
YuK, ChedinF, HsiehCL, WilsonTE, LieberMR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol2003; 4(5): 442–451
CrossRef Pubmed Google scholar
[35]
MasukataH, TomizawaJ. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell1990; 62(2): 331–338
CrossRef Pubmed Google scholar
[36]
LeeDY, ClaytonDA. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem1996; 271(39): 24262–24269
CrossRef Pubmed Google scholar
[37]
MartomoSA, YangWW, GearhartPJ. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med2004; 200(1): 61–68
CrossRef Pubmed Google scholar
[38]
NeubergerMS, RadaC. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T. J Exp Med2007; 204(1): 7–10
CrossRef Pubmed Google scholar
[39]
RadaC, Di NoiaJM, NeubergerMS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell2004; 16(2): 163–171
CrossRef Pubmed Google scholar
[40]
RadaC, EhrensteinMR, NeubergerMS, MilsteinC. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity1998; 9(1): 135–141
CrossRef Pubmed Google scholar
[41]
RadaC, WilliamsGT, NilsenH, BarnesDE, LindahlT, NeubergerMS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol2002; 12(20): 1748–1755
CrossRef Pubmed Google scholar
[42]
ShenHM, TanakaA, BozekG, NicolaeD, StorbU. Somatic hypermutation and class switch recombination in Msh6(-/-)Ung(-/-) double-knockout mice. J Immunol2006; 177(8): 5386–5392
Pubmed
[43]
XueK, RadaC, NeubergerMS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/- mice. J Exp Med2006; 203(9): 2085–2094
CrossRef Pubmed Google scholar
[44]
GuikemaJE, LinehanEK, TsuchimotoD, NakabeppuY, StraussPR, StavnezerJ, SchraderCE. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med2007; 204(12): 3017–3026
CrossRef Pubmed Google scholar
[45]
SabouriZ, OkazakiIM, ShinkuraR, BegumN, NagaokaH, TsuchimotoD, NakabeppuY, HonjoT. Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int Immunol2009; 21(8): 947–955
CrossRef Pubmed Google scholar
[46]
SchraderCE1, GuikemaJE, WuX, StavnezerJ. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1517) 645–652
Pubmed
[47]
LudwigDL, MacInnesMA, TakiguchiY, PurtymunPE, HenrieM, FlanneryM, MenesesJ, PedersenRA, ChenDJ. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res1998; 409(1): 17–29
CrossRef Pubmed Google scholar
[48]
XanthoudakisS, SmeyneRJ, WallaceJD, CurranT. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA1996; 93(17): 8919–8923
CrossRef Pubmed Google scholar
[49]
MasaniS, HanL, YuK. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol2013; 33(7): 1468–1473
CrossRef Pubmed Google scholar
[50]
ChahwanR, van OersJM, AvdievichE, ZhaoC, EdelmannW, ScharffMD, RoaS. The ATPase activity of MLH1 is required to orchestrate DNA double-strand breaks and end processing during class switch recombination. J Exp Med2012; 209(4): 671–678
CrossRef Pubmed Google scholar
[51]
LongerichS, BasuU, AltF, StorbU. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol2006; 18(2): 164–174
CrossRef Pubmed Google scholar
[52]
OdegardVH, SchatzDG. Targeting of somatic hypermutation. Nat Rev Immunol2006; 6(8): 573–583
CrossRef Pubmed Google scholar
[53]
LiuM, DukeJL, RichterDJ, VinuesaCG, GoodnowCC, KleinsteinSH, SchatzDG. Two levels of protection for the B cell genome during somatic hypermutation. Nature2008; 451(7180): 841–845
CrossRef Pubmed Google scholar
[54]
PasqualucciL, MigliazzaA, FracchiollaN, WilliamC, NeriA, BaldiniL, ChagantiRS, KleinU, KüppersR, RajewskyK, Dalla-FaveraR. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA1998; 95(20): 11816–11821
CrossRef Pubmed Google scholar
[55]
ShenHM, PetersA, BaronB, ZhuX, StorbU. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science1998; 280(5370): 1750–1752
CrossRef Pubmed Google scholar
[56]
PengHZ, DuMQ, KoulisA, AielloA, DoganA, PanLX, IsaacsonPG. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood1999; 93(7): 2167–2172
Pubmed
[57]
StorbU, ShenHM, MichaelN, KimN. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci2001; 356(1405): 13–19
CrossRef Pubmed Google scholar
[58]
GordonMS, KanegaiCM, DoerrJR, WallR. Somatic hypermutation of the B cell receptor genes B29 (Igβ, CD79b) and mb1 (Igα, CD79a). Proc Natl Acad Sci USA2003; 100(7): 4126–4131
CrossRef Pubmed Google scholar
[59]
DelkerRK, FugmannSD, PapavasiliouFN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol2009; 10(11): 1147–1153
CrossRef Pubmed Google scholar
[60]
RogozinIB, KolchanovNA. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta1992; 1171(1): 11–18
CrossRef Pubmed Google scholar
[61]
RogozinIB, PavlovYI, BebenekK, MatsudaT, KunkelTA. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol2001; 2(6): 530–536
CrossRef Pubmed Google scholar
[62]
KlotzEL, HackettJ Jr, StorbU. Somatic hypermutation of an artificial test substrate within an Igκ transgene. J Immunol1998; 161(2): 782–790
Pubmed
[63]
StorbU, KlotzEL, HackettJ Jr, KageK, BozekG, MartinTE. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med1998; 188(4): 689–698
CrossRef Pubmed Google scholar
[64]
MichaelN, MartinTE, NicolaeD, KimN, PadjenK, ZhanP, NguyenH, PinkertC, StorbU. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity2002; 16(1): 123–134
CrossRef Pubmed Google scholar
[65]
YélamosJ, KlixN, GoyenecheaB, LozanoF, ChuiYL, González FernándezA, PannellR, NeubergerMS, MilsteinC. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature1995; 376(6537): 225–229
CrossRef Pubmed Google scholar
[66]
JollyCJ, NeubergerMS. Somatic hypermutation of immunoglobulin κ transgenes: association of mutability with demethylation. Immunol Cell Biol2001; 79(1): 18–22
CrossRef Pubmed Google scholar
[67]
ChenZ, ViboolsittiseriSS, O’ConnorBP, WangJH. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. J Immunol2012; 189(8): 3970–3982
CrossRef Pubmed Google scholar
[68]
MutoT, OkazakiIM, YamadaS, TanakaY, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci USA2006; 103(8): 2752–2757
CrossRef Pubmed Google scholar
[69]
WangL, WuerffelR, FeldmanS, KhamlichiAA, KenterAL. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med2009; 206(8): 1817–1830
CrossRef Pubmed Google scholar
[70]
PavriR, GazumyanA, JankovicM, Di VirgilioM, KleinI, Ansarah-SobrinhoC, ReschW, YamaneA, Reina San-MartinB, BarretoV, NielandTJ, RootDE, CasellasR, NussenzweigMC. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell2010; 143(1): 122–133
CrossRef Pubmed Google scholar
[71]
StanlieA, AidaM, MuramatsuM, HonjoT, BegumNA. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc Natl Acad Sci USA2010; 107(51): 22190–22195
CrossRef Pubmed Google scholar
[72]
DanielJA, SantosMA, WangZ, ZangC, SchwabKR, JankovicM, FilsufD, ChenHT, GazumyanA, YamaneA, ChoYW, SunHW, GeK, PengW, NussenzweigMC, CasellasR, DresslerGR, ZhaoK, NussenzweigA. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science2010; 329(5994): 917–923
CrossRef Pubmed Google scholar
[73]
Jeevan-RajBP, RobertI, HeyerV, PageA, WangJH, CammasF, AltFW, LossonR, Reina-San-MartinB. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med2011; 208(8): 1649–1660
CrossRef Pubmed Google scholar
[74]
YamaneA, ReschW, KuoN, KuchenS, LiZ, SunHW, RobbianiDF, McBrideK, NussenzweigMC, CasellasR. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol2011; 12(1): 62–69
CrossRef Pubmed Google scholar
[75]
BetzAG, MilsteinC, González-FernándezA, PannellR, LarsonT, NeubergerMS. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell1994; 77(2): 239–248
CrossRef Pubmed Google scholar
[76]
InlayMA, GaoHH, OdegardVH, LinT, SchatzDG, XuY. Roles of the Igκ light chain intronic and 3′ enhancers in Igk somatic hypermutation. J Immunol2006; 177(2): 1146–1151
Pubmed
[77]
KothapalliNR, FugmannSD. Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol2011; 23(2): 184–189
CrossRef Pubmed Google scholar
[78]
PerlotT, AltFW, BassingCH, SuhH, PinaudE. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA2005; 102(40): 14362–14367
CrossRef Pubmed Google scholar
[79]
FukitaY, JacobsH, RajewskyK. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity1998; 9(1): 105–114
CrossRef Pubmed Google scholar
[80]
KothapalliNR, ColluraKM, NortonDD, FugmannSD. Separation of mutational and transcriptional enhancers in Ig genes. J Immunol2011; 187(6): 3247–3255
CrossRef Pubmed Google scholar
[81]
KothapalliNR, NortonDD, FugmannSD. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells. PLoS ONE2011; 6(4): e18955
CrossRef Pubmed Google scholar
[82]
StorbU, PetersA, KlotzE, KimN, ShenHM, HackettJ, RogersonB, MartinTE. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev1998; 162(1): 153–160
CrossRef Pubmed Google scholar
[83]
KodgireP, MukkawarP, RatnamS, MartinTE, StorbU. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J Exp Med2013; 210(7): 1481–1492
CrossRef Pubmed Google scholar
[84]
AidaM, HamadN, StanlieA, BegumNA, HonjoT. Accumulation of the FACT complex, as well as histone H3.3, serves as a target marker for somatic hypermutation. Proc Natl Acad Sci USA2013; 110(19): 7784–7789
CrossRef Pubmed Google scholar
[85]
MorvanCL, PinaudE, DecourtC, CuvillierA, CognéM. The immunoglobulin heavy-chain locus hs3b and hs4 3′ enhancers are dispensable for VDJ assembly and somatic hypermutation. Blood2003; 102(4): 1421–1427
CrossRef Pubmed Google scholar
[86]
RouaudP, Vincent-FabertC, SaintamandA, FiancetteR, MarquetM, RobertI, Reina-San-MartinB, PinaudE, CognéM, DenizotY. The IgH 3′ regulatory region controls somatic hypermutation in germinal center B cells. J Exp Med2013; 210(8): 1501–1507
CrossRef Pubmed Google scholar
[87]
McDonaldJJ, AlinikulaJ, BuersteddeJM, SchatzDG. A critical context-dependent role for E boxes in the targeting of somatic hypermutation. J Immunol2013; 191(4): 1556–1566
CrossRef Pubmed Google scholar
[88]
KohlerKM, McDonaldJJ, DukeJL, ArakawaH, TanS, KleinsteinSH, BuersteddeJM, SchatzDG. Identification of core DNA elements that target somatic hypermutation. J Immunol2012; 189(11): 5314–5326
CrossRef Pubmed Google scholar
[89]
BlagodatskiA, BatrakV, SchmidlS, SchoetzU, CaldwellRB, ArakawaH, BuersteddeJM. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet2009; 5(1): e1000332
CrossRef Pubmed Google scholar
[90]
KothapalliN, NortonDD, FugmannSD. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol2008; 180(4): 2019–2023
Pubmed
[91]
TanakaA, ShenHM, RatnamS, KodgireP, StorbU. Attracting AID to targets of somatic hypermutation. J Exp Med2010; 207(2): 405–415
CrossRef Pubmed Google scholar
[92]
GazumyanA, BothmerA, KleinIA, NussenzweigMC, McBrideKM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res2012; 113: 167–190
CrossRef Pubmed Google scholar
[93]
KüppersR, Dalla-FaveraR. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene2001; 20(40): 5580–5594
CrossRef Pubmed Google scholar
[94]
JanzS. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst)2006; 5(9-10): 1213–1224
CrossRef Pubmed Google scholar
[95]
KüppersR. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer2005; 5(4): 251–262
CrossRef Pubmed Google scholar
[96]
ShenHM, MichaelN, KimN, StorbU. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int Immunol2000; 12(7): 1085–1093
CrossRef Pubmed Google scholar
[97]
CaladoDP, SasakiY, GodinhoSA, PellerinA, KöchertK, SleckmanBP, de AlboránIM, JanzM, RodigS, RajewskyK. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol2012; 13(11): 1092–1100
CrossRef Pubmed Google scholar
[98]
ShilohY. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer2003; 3(3): 155–168
CrossRef Pubmed Google scholar
[99]
ShilohY, ZivY. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol2013; 14(4): 197–210
CrossRef Google scholar
[100]
BassingCH, AltFW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle2004; 3(2): 149–153
CrossRef Pubmed Google scholar
[101]
FrancoS, AltFW, ManisJP. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst)2006; 5(9-10): 1030–1041
CrossRef Pubmed Google scholar
[102]
RogakouEP, PilchDR, OrrAH, IvanovaVS, BonnerWM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem1998; 273(10): 5858–5868
CrossRef Pubmed Google scholar
[103]
ChapmanJR, BarralP, VannierJB, BorelV, StegerM, Tomas-LobaA, SartoriAA, AdamsIR, BatistaFD, BoultonSJ. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell2013; 49(5): 858–871
CrossRef Pubmed Google scholar
[104]
Di VirgilioM, CallenE, YamaneA, ZhangW, JankovicM, GitlinAD, FeldhahnN, ReschW, OliveiraTY, ChaitBT, NussenzweigA, CasellasR, RobbianiDF, NussenzweigMC. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science2013; 339(6120): 711–715
CrossRef Pubmed Google scholar
[105]
Escribano-DíazC, OrthweinA, Fradet-TurcotteA, XingM, YoungJT, TkáčJ, CookMA, RosebrockAP, MunroM, CannyMD, XuD, DurocherD. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell2013; 49(5): 872–883
CrossRef Pubmed Google scholar
[106]
FrancoS, GostissaM, ZhaS, LombardDB, MurphyMM, ZarrinAA, YanC, TepsupornS, MoralesJC, AdamsMM, LouZ, BassingCH, ManisJP, ChenJ, CarpenterPB, AltFW. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell2006; 21(2): 201–214
CrossRef Pubmed Google scholar
[107]
RamiroAR, JankovicM, CallenE, DifilippantonioS, ChenHT, McBrideKM, EisenreichTR, ChenJ, DickinsRA, LoweSW, NussenzweigA, NussenzweigMC. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature2006; 440(7080): 105–109
CrossRef Pubmed Google scholar
[108]
ManisJP, MoralesJC, XiaZ, KutokJL, AltFW, CarpenterPB. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol2004; 5(5): 481–487
CrossRef Pubmed Google scholar
[109]
WardIM, Reina-San-MartinB, OlaruA, MinnK, TamadaK, LauJS, CascalhoM, ChenL, NussenzweigA, LivakF, NussenzweigMC, ChenJ. 53BP1 is required for class switch recombination. J Cell Biol2004; 165(4): 459–464
CrossRef Pubmed Google scholar
[110]
Reina-San-MartinB, ChenJ, NussenzweigA, NussenzweigMC. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol2007; 37(1): 235–239
CrossRef Pubmed Google scholar
[111]
BothmerA, RobbianiDF, Di VirgilioM, BuntingSF, KleinIA, FeldhahnN, BarlowJ, ChenHT, BosqueD, CallenE, NussenzweigA, NussenzweigMC. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell2011; 42(3): 319–329
CrossRef Pubmed Google scholar
[112]
BothmerA, RobbianiDF, FeldhahnN, GazumyanA, NussenzweigA, NussenzweigMC. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med2010; 207(4): 855–865
CrossRef Pubmed Google scholar
[113]
ChapmanJR, TaylorMR, BoultonSJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell2012; 47(4): 497–510
CrossRef Pubmed Google scholar
[114]
BothmerA, RommelPC, GazumyanA, PolatoF, ReczekCR, MuellenbeckMF, SchaetzleinS, EdelmannW, ChenPL, BroshRM Jr, CasellasR, LudwigT, BaerR, NussenzweigA, NussenzweigMC, RobbianiDF. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J Exp Med2013; 210(1): 115–123
CrossRef Pubmed Google scholar
[115]
StavnezerJ, BjörkmanA, DuL, CagigiA, Pan-HammarströmQ. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol2010; 108: 45–109
CrossRef Pubmed Google scholar
[116]
LieberMR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem2010; 79(1): 181–211
CrossRef Pubmed Google scholar
[117]
LieberMR, GuJ, LuH, ShimazakiN, TsaiAG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem2010; 50: 279–296
CrossRef Pubmed Google scholar
[118]
WeinstockDM, RichardsonCA, ElliottB, JasinM. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst)2006; 5(9-10): 1065–1074
CrossRef Pubmed Google scholar
[119]
WestSC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol2003; 4(6): 435–445
CrossRef Pubmed Google scholar
[120]
SymingtonLS, GautierJ. Double-strand break end resection and repair pathway choice. Annu Rev Genet2011; 45(1): 247–271
CrossRef Pubmed Google scholar
[121]
CallenE, Di VirgilioM, KruhlakMJ, Nieto-SolerM, WongN, ChenHT, FaryabiRB, PolatoF, SantosM, StarnesLM, WesemannDR, LeeJE, TubbsA, SleckmanBP, DanielJA, GeK, AltFW, Fernandez-CapetilloO, NussenzweigMC, NussenzweigA. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell2013; 153(6): 1266–1280
CrossRef Pubmed Google scholar
[122]
RooneyS, ChaudhuriJ, AltFW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev2004; 200(1): 115–131
CrossRef Pubmed Google scholar
[123]
RothDB. Restraining the V(D)J recombinase. Nat Rev Immunol2003; 3(8): 656–666
CrossRef Pubmed Google scholar
[124]
YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature2007; 449(7161): 478–482
CrossRef Pubmed Google scholar
[125]
WangJH, GostissaM, YanCT, GoffP, HickernellT, HansenE, DifilippantonioS, WesemannDR, ZarrinAA, RajewskyK, NussenzweigA, AltFW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature2009; 460(7252): 231–236
CrossRef Pubmed Google scholar
[126]
BoboilaC, YanC, WesemannDR, JankovicM, WangJH, ManisJ, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med2010; 207(2): 417–427
CrossRef Pubmed Google scholar
[127]
BoboilaC, JankovicM, YanCT, WangJH, WesemannDR, ZhangT, FazeliA, FeldmanL, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA2010; 107(7): 3034–3039
CrossRef Pubmed Google scholar
[128]
DifilippantonioMJ, PetersenS, ChenHT, JohnsonR, JasinM, KanaarR, RiedT, NussenzweigA. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med2002; 196(4): 469–480
CrossRef Pubmed Google scholar
[129]
RooneyS, SekiguchiJ, WhitlowS, EckersdorffM, ManisJP, LeeC, FergusonDO, AltFW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA2004; 101(8): 2410–2415
CrossRef Pubmed Google scholar
[130]
WangJH, AltFW, GostissaM, DattaA, MurphyM, AlimzhanovMB, CoakleyKM, RajewskyK, ManisJP, YanCT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med2008; 205(13): 3079–3090
CrossRef Pubmed Google scholar
[131]
ZhuC, MillsKD, FergusonDO, LeeC, ManisJ, FlemingJ, GaoY, MortonCC, AltFW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell2002; 109(7): 811–821
CrossRef Pubmed Google scholar
[132]
McVeyM, LeeSE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet2008; 24(11): 529–538
CrossRef Pubmed Google scholar
[133]
DerianoL, StrackerTH, BakerA, PetriniJH, RothDB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell2009; 34(1): 13–25
CrossRef Pubmed Google scholar
[134]
DinkelmannM, SpehalskiE, StonehamT, BuisJ, WuY, SekiguchiJM, FergusonDO. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol2009; 16(8): 808–813
CrossRef Pubmed Google scholar
[135]
RassE, GrabarzA, PloI, GautierJ, BertrandP, LopezBS. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol2009; 16(8): 819–824
CrossRef Pubmed Google scholar
[136]
XieA, KwokA, ScullyR. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol2009; 16(8): 814–818
CrossRef Pubmed Google scholar
[137]
Lee-TheilenM, MatthewsAJ, KellyD, ZhengS, ChaudhuriJ. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol2011; 18(1): 75–79
CrossRef Pubmed Google scholar
[138]
ZhangY, JasinM. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol2011; 18(1): 80–84
CrossRef Pubmed Google scholar
[139]
Della-MariaJ, ZhouY, TsaiMS, KuhnleinJ, CarneyJP, PaullTT, TomkinsonAE. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J Biol Chem2011; 286(39): 33845–33853
CrossRef Pubmed Google scholar
[140]
SaribasakH, MaulRW, CaoZ, McClureRL, YangW, McNeillDR, WilsonDM 3rd, GearhartPJ. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. J Exp Med2011; 208(11): 2209–2216
CrossRef Pubmed Google scholar
[141]
SimsekD, BrunetE, WongSY, KatyalS, GaoY, McKinnonPJ, LouJ, ZhangL, LiJ, RebarEJ, GregoryPD, HolmesMC, JasinM. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet2011; 7(6): e1002080
CrossRef Pubmed Google scholar
[142]
CaldecottKW. XRCC1 and DNA strand break repair. DNA Repair (Amst)2003; 2(9): 955–969
CrossRef Pubmed Google scholar
[143]
BoboilaC, OksenychV, GostissaM, WangJH, ZhaS, ZhangY, ChaiH, LeeCS, JankovicM, SaezLM, NussenzweigMC, McKinnonPJ, AltFW, SchwerB. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci USA2012; 109(7): 2473–2478
CrossRef Pubmed Google scholar
[144]
JungD, GiallourakisC, Mostoslavs kyR, AltFW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol2006; 24(1): 541–570
CrossRef Pubmed Google scholar
[145]
WangJH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med2012; 6(3): 263–274
CrossRef Pubmed Google scholar
[146]
RamiroAR, JankovicM, EisenreichT, DifilippantonioS, Chen-KiangS, MuramatsuM, HonjoT, NussenzweigA, NussenzweigMC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell2004; 118(4): 431–438
CrossRef Pubmed Google scholar
[147]
PasqualucciL, NeumeisterP, GoossensT, NanjangudG, ChagantiRS, KüppersR, Dalla-FaveraR. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature2001; 412(6844): 341–346
CrossRef Pubmed Google scholar
[148]
OhnoH. Pathogenetic and clinical implications of non-immunoglobulin; BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematop2006; 46(2): 43–53
CrossRef Pubmed Google scholar
[149]
BertrandP, BastardC, MaingonnatC, JardinF, MaisonneuveC, CourelMN, RuminyP, PicquenotJM, TillyH. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia2007; 21(3): 515–523
CrossRef Pubmed Google scholar
[150]
RobbianiDF, BothmerA, CallenE, Reina-San-MartinB, DorsettY, DifilippantonioS, BollandDJ, ChenHT, CorcoranAE, NussenzweigA, NussenzweigMC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell2008; 135(6): 1028–1038
CrossRef Pubmed Google scholar
[151]
RobbianiDF, BuntingS, FeldhahnN, BothmerA, CampsJ, DeroubaixS, McBrideKM, KleinIA, StoneG, EisenreichTR, RiedT, NussenzweigA, NussenzweigMC. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell2009; 36(4): 631–641
CrossRef Pubmed Google scholar
[152]
ChiarleR, ZhangY, FrockRL, LewisSM, MolinieB, HoYJ, MyersDR, ChoiVW, CompagnoM, MalkinDJ, NeubergD, MontiS, GiallourakisCC, GostissaM, AltFW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell2011; 147(1): 107–119
CrossRef Pubmed Google scholar
[153]
KleinIA, ReschW, JankovicM, OliveiraT, YamaneA, NakahashiH, Di VirgilioM, BothmerA, NussenzweigA, RobbianiDF, CasellasR, NussenzweigMC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell2011; 147(1): 95–106
CrossRef Pubmed Google scholar
[154]
StaszewskiO, BakerRE, UcherAJ, MartierR, StavnezerJ, GuikemaJE. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell2011; 41(2): 232–242
CrossRef Pubmed Google scholar
[155]
MuramatsuM, SankaranandVS, AnantS, SugaiM, KinoshitaK, DavidsonNO, HonjoT. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem1999; 274(26): 18470–18476
CrossRef Pubmed Google scholar
[156]
CrouchEE, LiZ, TakizawaM, Fichtner-FeiglS, GourziP, MontañoC, FeigenbaumL, WilsonP, JanzS, PapavasiliouFN, CasellasR. Regulation of AID expression in the immune response. J Exp Med2007; 204(5): 1145–1156
CrossRef Pubmed Google scholar
[157]
GourziP, LeonovaT, PapavasiliouFN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity2006; 24(6): 779–786
CrossRef Pubmed Google scholar
[158]
SzczylikC, SkorskiT, NicolaidesNC, ManzellaL, MalaguarneraL, VenturelliD, GewirtzAM, CalabrettaB. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science1991; 253(5019): 562–565
CrossRef Pubmed Google scholar
[159]
Van EttenRA, JacksonP, BaltimoreD. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell1989; 58(4): 669–678
CrossRef Pubmed Google scholar
[160]
Quintás-CardamaA, CortesJ. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood2009; 113(8): 1619–1630
CrossRef Pubmed Google scholar
[161]
FeldhahnN, HenkeN, MelchiorK, DuyC, SohBN, KleinF, von LevetzowG, GiebelB, LiA, HofmannWK, JumaaH, MüschenM. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med2007; 204(5): 1157–1166
CrossRef Pubmed Google scholar
[162]
KlemmL, DuyC, IacobucciI, KuchenS, von LevetzowG, FeldhahnN, HenkeN, LiZ, HoffmannTK, KimYM, HofmannWK, JumaaH, GroffenJ, HeisterkampN, MartinelliG, LieberMR, CasellasR, MüschenM. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell2009; 16(3): 232–245
CrossRef Pubmed Google scholar
[163]
GruberTA, ChangMS, SpostoR, MüschenM. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res2010; 70(19): 7411–7420
CrossRef Pubmed Google scholar
[164]
YoshikawaK, OkazakiIM, EtoT, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science2002; 296(5575): 2033–2036
CrossRef Pubmed Google scholar
[165]
OkazakiIM, HiaiH, KakazuN, YamadaS, MuramatsuM, KinoshitaK, HonjoT. Constitutive expression of AID leads to tumorigenesis. J Exp Med2003; 197(9): 1173–1181
CrossRef Pubmed Google scholar
[166]
MorrisDS, TomlinsSA, MontieJE, ChinnaiyanAM. The discovery and application of gene fusions in prostate cancer. BJU Int2008; 102(3): 276–282
CrossRef Pubmed Google scholar
[167]
ManoH. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci2008; 99(12): 2349–2355
CrossRef Pubmed Google scholar
[168]
LinC, YangL, TanasaB, HuttK, JuBG, OhgiK, ZhangJ, RoseDW, FuXD, GlassCK, RosenfeldMG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell2009; 139(6): 1069–1083
CrossRef Pubmed Google scholar
[169]
MatsumotoY, MarusawaH, KinoshitaK, EndoY, KouT, MorisawaT, AzumaT, OkazakiIM, HonjoT, ChibaT. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med2007; 13(4): 470–476
CrossRef Pubmed Google scholar
[170]
MuñozDP, LeeEL, TakayamaS, CoppéJP, HeoSJ, BoffelliD, Di NoiaJM, MartinDI. Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci USA2013; 110(32): E2977–E2986
CrossRef Pubmed Google scholar
[171]
KumarR, DiMennaL, SchrodeN, LiuTC, FranckP, Muñoz-DescalzoS, HadjantonakisAK, ZarrinAA, ChaudhuriJ, ElementoO, EvansT. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature2013; 500(7460): 89–92
CrossRef Pubmed Google scholar
[172]
BhutaniN, DeckerMN, BradyJJ, BussatRT, BurnsDM, CorbelSY, BlauHM. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J2013; 27(3): 1107–1113
CrossRef Pubmed Google scholar
[173]
PoppC, DeanW, FengS, CokusSJ, AndrewsS, PellegriniM, JacobsenSE, ReikW. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature2010; 463(7284): 1101–1105
CrossRef Pubmed Google scholar
[174]
BhutaniN, BradyJJ, DamianM, SaccoA, CorbelSY, BlauHM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature2010; 463(7284): 1042–1047
CrossRef Pubmed Google scholar
[175]
HogenbirkMA, HeidemanMR, VeldsA, van den BerkPC, KerkhovenRM, van SteenselB, JacobsH. Differential programming of B cells in AID deficient mice. PLoS ONE2013; 8(7): e69815
CrossRef Pubmed Google scholar
[176]
HogenbirkMA, VeldsA, KerkhovenRM, JacobsH. Reassessing genomic targeting of AID. Nat Immunol2012; 13(9): 797–798, author reply 798–800
CrossRef Pubmed Google scholar
[177]
VuongBQ, LeeM, KabirS, IrimiaC, MacchiaruloS, McKnightGS, ChaudhuriJ. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat Immunol2009; 10(4): 420–426
CrossRef Pubmed Google scholar
[178]
BasuU, ChaudhuriJ, AlpertC, DuttS, RanganathS, LiG, SchrumJP, ManisJP, AltFW. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature2005; 438(7067): 508–511
CrossRef Pubmed Google scholar
[179]
ChengHL, VuongBQ, BasuU, FranklinA, SchwerB, AstaritaJ, PhanRT, DattaA, ManisJ, AltFW, ChaudhuriJ. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci USA2009; 106(8): 2717–2722
CrossRef Pubmed Google scholar
[180]
HakimO, ReschW, YamaneA, KleinI, Kieffer-KwonKR, JankovicM, OliveiraT, BothmerA, VossTC, Ansarah-SobrinhoC, MatheE, LiangG, CobellJ, NakahashiH, RobbianiDF, NussenzweigA, HagerGL, NussenzweigMC, CasellasR. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature2012; 484(7392): 69–74
Pubmed
[181]
RochaPP, MicsinaiM, KimJR, HewittSL, SouzaPP, TrimarchiT, StrinoF, ParisiF, KlugerY, SkokJA. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol Cell2012; 47(6): 873–885
CrossRef Pubmed Google scholar
[182]
ZhangY, McCordRP, HoYJ, LajoieBR, HildebrandDG, SimonAC, BeckerMS, AltFW, DekkerJ. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell2012; 148(5): 908–921
CrossRef Pubmed Google scholar
[183]
GramlichHS, ReisbigT, SchatzDG. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells. PLoS ONE2012; 7(6): e39601
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(440 KB)

Accesses

Citations

Detail

Sections
Recommended

/