Regulation and function of histone acetyltransferase MOF

Yang Yang, Xiaofei Han, Jingyun Guan, Xiangzhi Li

PDF(146 KB)
PDF(146 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (1) : 79-83. DOI: 10.1007/s11684-014-0314-6
REVIEW
REVIEW

Regulation and function of histone acetyltransferase MOF

Author information +
History +

Abstract

The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells.

Keywords

MOF / histone acetyltransferase / DNA damage repair / tumorigenesis / embryonic stem cells

Cite this article

Download citation ▾
Yang Yang, Xiaofei Han, Jingyun Guan, Xiangzhi Li. Regulation and function of histone acetyltransferase MOF. Front Med, 2014, 8(1): 79‒83 https://doi.org/10.1007/s11684-014-0314-6

References

[1]
Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J2004; 23(11): 2258–2268
CrossRef Pubmed Google scholar
[2]
Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol2005; 25(21): 9175–9188
CrossRef Pubmed Google scholar
[3]
Li X, Wu L, Corsa CA, Kunkel S, Dou Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell2009; 36(2): 290–301
CrossRef Pubmed Google scholar
[4]
Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet2012; 13(2): 123–134
CrossRef Pubmed Google scholar
[5]
Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development2009; 136(9): 1399–1410
CrossRef Pubmed Google scholar
[6]
Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet2005; 39(1): 615–651
CrossRef Pubmed Google scholar
[7]
Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol2005; 25(15): 6798–6810
CrossRef Pubmed Google scholar
[8]
Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J1997; 16(8): 2054–2060
CrossRef Pubmed Google scholar
[9]
Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol2008; 28(1): 397–409
CrossRef Pubmed Google scholar
[10]
Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol2010; 30(22): 5335–5347
CrossRef Pubmed Google scholar
[11]
Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell2005; 121(6): 873–885
CrossRef Pubmed Google scholar
[12]
Thomas T, Dixon MP, Kueh AJ, Voss AK. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol2008; 28(16): 5093–5105
CrossRef Pubmed Google scholar
[13]
Li X, Dou Y. New perspectives for the regulation of acetyltransferase MOF. Epigenetics2010; 5(3): 185–188
CrossRef Pubmed Google scholar
[14]
Li X, Wu L, Corsa CA, Kunkel S, Dou Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell2009; 36(2): 290–301
CrossRef Pubmed Google scholar
[15]
Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J2004; 23(11): 2258–2268
CrossRef Pubmed Google scholar
[16]
Li X, Li L, Pandey R, Byun JS, Gardner K, Qin Z, Dou Y. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell2012; 11(2): 163–178
CrossRef Pubmed Google scholar
[17]
Sun B, Guo S, Tang Q, Li C, Zeng R, Xiong Z, Zhong C, Ding J. Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274. Cell Res2011; 21(8): 1262–1266
CrossRef Pubmed Google scholar
[18]
Yang C, Wu J, Sinha SH, Neveu JM, Zheng YG. Autoacetylation of the MYST lysine acetyltransferase MOF protein. J Biol Chem2012; 287(42): 34917–34926
CrossRef Pubmed Google scholar
[19]
Yuan H, Rossetto D, Mellert H, Dang WW, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, Côté J, Marmorstein R. MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J2012; 31(1): 58–70
CrossRef Pubmed Google scholar
[20]
Lu L, Li L, Lv X, Wu XS, Liu DP, Liang CC. Modulations of hMOF autoacetylation by SIRT1 regulate hMOF recruitment and activities on the chromatin. Cell Res2011; 21(8): 1182–1195
CrossRef Pubmed Google scholar
[21]
Peng LR, Ling HB, Yuan ZG, Fang B, Bloom G, Fukasawa K, Koomen J, Chen JD, Lane WS, Seto E. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol2012; 32(14): 2823–2836
CrossRef Pubmed Google scholar
[22]
Katoh H, Qin ZS, Liu RH, Wang LZ, Li WQ, Li X, Wu LP, Du ZW, Lyons R, Liu CG, Liu X, Dou Y, Zheng P, Liu Y. FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1. Mol Cell2011; 44(5): 770–784
CrossRef Pubmed Google scholar
[23]
Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK. Involvement of human MOF in ATM function. Mol Cell Biol 2005; 25(12): 5292–5305
CrossRef Pubmed Google scholar
[24]
Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol2010; 30(14): 3582–3595
CrossRef Pubmed Google scholar
[25]
Taipale M, Akhtar A. Chromatin mechanisms in Drosophila dosage compensation. Prog Mol Subcell Biol2005; 38: 123–149
CrossRef Pubmed Google scholar
[26]
Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell2006; 24(6): 841–851
CrossRef Pubmed Google scholar
[27]
Mellert HS, Stanek TJ, Sykes SM, Rauscher FJ 3rd, Schultz DC, McMahon SB. Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem2011; 286(6): 4264–4270
CrossRef Pubmed Google scholar
[28]
Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB. Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem2009; 284(30): 20197–20205
CrossRef Pubmed Google scholar
[29]
Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet2005; 37(4): 391–400
CrossRef Pubmed Google scholar
[30]
Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, Sinn HP, Akhtar A, Lichter P. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer2008; 122(6): 1207–1213
CrossRef Pubmed Google scholar
[31]
Patani N, Jiang WG, Newbold RF, Mokbel K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res2011; 31(12): 4115–4125
Pubmed
[32]
Liu B, Wei DP, Hu LN, Cui Ling. Expression and clinical significance of hMOF and P53 protein in cervical lesion. J Med West China (Xi Bu Yi Xue)2011; 23(5): 817–819 (in Chinese)
[33]
Song JS, Chun SM, Lee JY, Kim DK, Kim YH, Jang SJ. The histone acetyltransferase hMOF is overexpressed in non-small cell lung carcinoma. Korean Journal of Pathology2011; 45(4): 386–396
CrossRef Google scholar
[34]
Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem2009; 284(5): 3250–3263
CrossRef Pubmed Google scholar
[35]
Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell2011; 145(5): 692–706
CrossRef Pubmed Google scholar
[36]
Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell2011; 145(2): 183–197
CrossRef Pubmed Google scholar
[37]
Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet2006; 38(4): 431–440
CrossRef Pubmed Google scholar
[38]
Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell2008; 134(1): 162–174
CrossRef Pubmed Google scholar
[39]
Lin W, Srajer G, Evrard YA, Phan HM, Furuta Y, Dent SY. Developmental potential of Gcn5(–/–) embryonic stem cells in vivo and in vitro. Dev Dyn2007; 236(6): 1547–1557
CrossRef Pubmed Google scholar
[40]
Zhong X, Jin Y. Critical roles of coactivator p300 in mouse embryonic stem cell differentiation and Nanog expression. J Biol Chem2009; 284(14): 9168–9175
CrossRef Pubmed Google scholar

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 31171428) and the Program for New Century Excellent Talents in University (NCET).
Compliance with ethics guidelines
Yang Yang, Xiaofei Han, Jingyun Guan, and Xiangzhi Li declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed. Animal care was in strict compliance with the institutional guidelines of the Shandong University School of Medicine. All animal procedures were approved by the Institutional Animal Care and Use Committee of the Shandong University School of Medicine. Our experiments are always conducted in accordance with the principles of experimental animal welfare and ethics.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(146 KB)

Accesses

Citations

Detail

Sections
Recommended

/