Genetic evidence in planar cell polarity signaling pathway in human neural tube defects

Chunquan Cai, Ouyan Shi

PDF(222 KB)
PDF(222 KB)
Front. Med. ›› 2014, Vol. 8 ›› Issue (1) : 68-78. DOI: 10.1007/s11684-014-0308-4
REVIEW
REVIEW

Genetic evidence in planar cell polarity signaling pathway in human neural tube defects

Author information +
History +

Abstract

Neural tube defects (NTDs) are a group of birth anomalies having a profound physical, emotional, and financial effects on families and communities. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure and has been implicated in the pathogenesis of NTDs in animal models and human cohorts. This review summarizes the cumulative results of recent studies on PCP signaling pathway and human NTDs. These results demonstrate that PCP gene alterations contribute to the etiology of human NTDs.

Keywords

planar cell polarity / neural tube defects / rare mutations

Cite this article

Download citation ▾
Chunquan Cai, Ouyan Shi. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects. Front Med, 2014, 8(1): 68‒78 https://doi.org/10.1007/s11684-014-0308-4

References

[1]
Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol2009; 85(4): 274-284
CrossRef Pubmed Google scholar
[2]
De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V. Reduced folate carrier polymorphism (80A—>G) and neural tube defects. Eur J Hum Genet2003; 11(3): 245-252
CrossRef Pubmed Google scholar
[3]
O’Leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM; Members of the Birth Defects Research Group. Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab2006; 87(4): 364-369PMID:16343969
CrossRef Google scholar
[4]
De Marco P, Merello E, Calevo MG, Mascelli S, Raso A, Cama A, Capra V. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G>A polymorphism for neural tube defect risk. J Hum Genet2006; 51(2): 98-103
CrossRef Pubmed Google scholar
[5]
Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet2007; 71(4): 295-310
CrossRef Pubmed Google scholar
[6]
van der Linden IJ, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc2006; 65(2): 204-215
CrossRef Pubmed Google scholar
[7]
Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol2009; 16(3): 101-110
CrossRef Pubmed Google scholar
[8]
De Marco P, Merello E, Cama A, Kibar Z, Capra V. Human neural tube defects: genetic causes and prevention. Biofactors2011; 37(4): 261-268
CrossRef Pubmed Google scholar
[9]
Rufener S, Ibrahim M, Parmar HA. Imaging of congenital spine and spinal cord malformations. Neuroimaging Clin N Am2011; 21(3): 659-676, viii
CrossRef Pubmed Google scholar
[10]
Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn2009; 29(4): 303-311
CrossRef Pubmed Google scholar
[11]
Catala M. Genetic control of caudal development. Clin Genet2002; 61(2): 89-96
CrossRef Pubmed Google scholar
[12]
Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn2001; 221(2): 117-145
CrossRef Pubmed Google scholar
[13]
Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet2003; 4(10): 784-793
CrossRef Pubmed Google scholar
[14]
Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology1991; 44(2): 225-233
CrossRef Pubmed Google scholar
[15]
Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong SL, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet1993; 47(5): 723-743
CrossRef Pubmed Google scholar
[16]
Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl)2000; 201(6): 455-466
CrossRef Pubmed Google scholar
[17]
O’Rahilly R, Müller F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology2002; 65(4): 162-170
CrossRef Pubmed Google scholar
[18]
Rossi A, Cama A, Piatelli G, Ravegnani M, Biancheri R, Tortori-Donati P. Spinal dysraphism: MR imaging rationale. J Neuroradiol2004; 31(1): 3-24
CrossRef Pubmed Google scholar
[19]
Vieira AR, Castillo Taucher S. Maternal age and neural tube defects: evidence for a greater effect in spina bifida than in anencephaly. Rev Med Chil2005; 133(1): 62-70(in Spanish)
Pubmed
[20]
Njamnshi AK, Djientcheu VP, Lekoubou A, Guemse M, Obama MT, Mbu R, Takongmo S, Kago I. Neural tube defects are rare among black Americans but not in sub-Saharan black Africans: the case of Yaounde-Cameroon. J Neurol Sci2008; 270(1-2): 13-17
CrossRef Pubmed Google scholar
[21]
Grewal J, Carmichael SL, Song J, Shaw GM. Neural tube defects: an analysis of neighbourhood- and individual-level socio-economic characteristics. Paediatr Perinat Epidemiol2009; 23(2): 116-124
CrossRef Pubmed Google scholar
[22]
Moretti ME, Bar-Oz B, Fried S, Koren G. Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology2005; 16(2): 216-219
CrossRef Pubmed Google scholar
[23]
Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet2005; 135C(1): 77-87
CrossRef Pubmed Google scholar
[24]
Ray JG, Wyatt PR, Vermeulen MJ, Meier C, Cole DE. Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet Gynecol2005; 105(2): 261-265
CrossRef Pubmed Google scholar
[25]
De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med2007; 357(2): 135-142
CrossRef Pubmed Google scholar
[26]
Cogram P, Hynes A, Dunlevy LPE, Greene NDE, Copp AJ. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Hum Mol Genet2004; 13(1): 7-14
CrossRef Pubmed Google scholar
[27]
Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J2005; 19(9): 1166-1168
Pubmed
[28]
Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol2005; 74(5): 392-398
CrossRef Pubmed Google scholar
[29]
Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide exposure and neural tube defects in Mexican Americans. Ann Epidemiol2010; 20(1): 16-22
CrossRef Pubmed Google scholar
[30]
Alwan S, Reefhuis J, Rasmussen SA, Olney RS, Friedman JM; National Birth Defects Prevention Study. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med2007; 356(26): 2684-2692
CrossRef Pubmed Google scholar
[31]
Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol2010; 88(8): 653-669
CrossRef Pubmed Google scholar
[32]
Bayly R, Axelrod JD. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet2011; 12(6): 385-391
CrossRef Pubmed Google scholar
[33]
Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development2011; 138(10): 1877-1892
CrossRef Pubmed Google scholar
[34]
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell2011; 21(1): 120-133
CrossRef Pubmed Google scholar
[35]
Henderson DJ, Chaudhry B. Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol2011; 91(6): 460-467
CrossRef Pubmed Google scholar
[36]
Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature2000; 405(6782): 76-81
CrossRef Pubmed Google scholar
[37]
Wallingford JB, Rowning BA, Vogeli KM, Rothbächer U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature2000; 405(6782): 81-85
CrossRef Pubmed Google scholar
[38]
Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet2001; 28(3): 251-255
CrossRef Pubmed Google scholar
[39]
Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet2001; 10(22): 2593-2601
CrossRef Pubmed Google scholar
[40]
Tree DR, Ma D, Axelrod JD. A three-tiered mechanism for regulation of planar cell polarity. Semin Cell Dev Biol2002; 13(3): 217-224
CrossRef Pubmed Google scholar
[41]
Axelrod JD. Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol2009; 20(8): 964-971
CrossRef Pubmed Google scholar
[42]
Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD. Fidelity in planar cell polarity signalling. Nature2003; 421(6922): 543-547
CrossRef Pubmed Google scholar
[43]
Zallen JA. Planar polarity and tissue morphogenesis. Cell2007; 129(6): 1051-1063PMID:17574020
CrossRef Google scholar
[44]
Jones C, Chen P. Planar cell polarity signaling in vertebrates. Bioessays2007; 29(2): 120-132
CrossRef Pubmed Google scholar
[45]
Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet2009; 18(R2): R113-R129
CrossRef Pubmed Google scholar
[46]
Lawrence PA, Struhl G, Casal J. Planar cell polarity: one or two pathways? Nat Rev Genet2007; 8(7): 555-563
CrossRef Pubmed Google scholar
[47]
Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays2011; 33(10): 759-768PMID:21919026
CrossRef Google scholar
[48]
Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell2008; 133(6): 1093-1105
CrossRef Pubmed Google scholar
[49]
Strutt D, Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol2007; 302(1): 181-194
CrossRef Pubmed Google scholar
[50]
Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development2004; 131(19): 4651-4664
CrossRef Pubmed Google scholar
[51]
Amonlirdviman K, Khare NA, Tree DR, Chen WS, Axelrod JD, Tomlin CJ. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science2005; 307(5708): 423-426
CrossRef Pubmed Google scholar
[52]
Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development2006; 133(22): 4561-4572
CrossRef Pubmed Google scholar
[53]
Katoh Y, Katoh M. Comparative genomics on Vangl1 and Vangl2 genes. Int J Oncol2005; 26(5): 1435-1440
Pubmed
[54]
Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med2007; 356(14): 1432-1437
CrossRef Pubmed Google scholar
[55]
Kibar Z, Bosoi CM, Kooistra M, Salem S, Finnell RH, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Novel mutations in VANGL1 in neural tube defects. Hum Mutat2009; 30(7): E706-E715
CrossRef Pubmed Google scholar
[56]
Reynolds A, McDearmid JR, Lachance S, De Marco P, Merello E, Capra V, Gros P, Drapeau P, Kibar Z. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev2010; 127(7-8): 385-392
CrossRef Pubmed Google scholar
[57]
Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects. Mol Syndromol2012; 3(2): 76-81
Pubmed
[58]
Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med2010; 362(23): 2232-2235
CrossRef Pubmed Google scholar
[59]
Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet2011; 80(1): 76-82
CrossRef Pubmed Google scholar
[60]
Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci2007; 28(10): 518-525
CrossRef Pubmed Google scholar
[61]
Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci2006; 26(8): 2147-2156
CrossRef Pubmed Google scholar
[62]
Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci2006; 26(2): 355-364
CrossRef Pubmed Google scholar
[63]
Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development2010; 137(21): 3707-3717
CrossRef Pubmed Google scholar
[64]
Sala CF, Formenti E, Terstappen GC, Caricasole A. Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochem Biophys Res Commun2000; 273(1): 27-34
CrossRef Pubmed Google scholar
[65]
Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun1998; 243(2): 622-627
CrossRef Pubmed Google scholar
[66]
De Marco P, Merello E, Rossi A, Piatelli G, Cama A, Kibar Z, Capra V. FZD6 is a novel gene for human neural tube defects. Hum Mutat2012; 33(2): 384-390
CrossRef Pubmed Google scholar
[67]
Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci2007; 8(1): 11-20
CrossRef Pubmed Google scholar
[68]
Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat2012; 33(2): 440-447
CrossRef Pubmed Google scholar
[69]
Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol2012; 94(3): 176-181
CrossRef Pubmed Google scholar
[70]
Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature2002; 419(6908): 726-729
CrossRef Pubmed Google scholar
[71]
Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell2003; 12(5): 1251-1260
CrossRef Pubmed Google scholar
[72]
Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol2000; 7(12): 1178-1184
CrossRef Pubmed Google scholar
[73]
Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development2006; 133(9): 1767-1778
CrossRef Pubmed Google scholar
[74]
Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet2008; 4(11): e1000259
CrossRef Pubmed Google scholar
[75]
De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci2013; 49(3): 582-588
CrossRef Pubmed Google scholar
[76]
Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development2003; 130(17): 4037-4046
CrossRef Pubmed Google scholar
[77]
Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol2003; 13(8): 674-679
CrossRef Pubmed Google scholar
[78]
Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol2003; 13(8): 680-685
CrossRef Pubmed Google scholar
[79]
Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, Finnell RH. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A2010; 152A(2): 299-304
CrossRef Pubmed Google scholar
[80]
Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, Fox MH, Gurnett C, Montine T, Bird T, Shaffer LG, Rosenfeld JA, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto RP, Scott MP, Antic D, Reed J, Boland R, Ehaideb SN, El-Shanti H, Mahajan VB, Ferguson PJ, Axelrod JD, Lehesjoki AE, Fritzsch B, Slusarski DC, Wemmie J, Ueno N, Bassuk AG. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet2011; 88(2): 138-149
CrossRef Pubmed Google scholar
[81]
Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, Drapeau P, Bassuk AG, Kibar Z. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat2011; 32(12): 1371-1375
CrossRef Pubmed Google scholar
[82]
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol2009; 11(10): 1225-1232
CrossRef Pubmed Google scholar
[83]
Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn2009; 238(12): 3035-3042
CrossRef Pubmed Google scholar
[84]
Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet2011; 20(22): 4324-4333
CrossRef Pubmed Google scholar
[85]
Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet2003; 12(2): 87-98
CrossRef Pubmed Google scholar
[86]
Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell2002; 2(4): 449-461
CrossRef Pubmed Google scholar
[87]
Suriben R, Kivimäe S, Fisher DA, Moon RT, Cheyette BN. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet2009; 41(9): 977-985
CrossRef Pubmed Google scholar
[88]
Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem2010; 285(14): 11023-11030
CrossRef Pubmed Google scholar
[89]
Yang X, Cheyette BN. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem2013; 288(28): 20111-20120
CrossRef Pubmed Google scholar
[90]
Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, Cai CQ, Li H, Chen Y, Zhang T, Wu BL, Jin L, Chen YG, Wang HY. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat2012; 33(10): 1450-1455
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (“973” Program) on Population and Health (No.2013CB945404), the Key Project of Tianjin Health Care Professionals (No.12KG116), the Science and Technology Foundation of the Tianjin Bureau of Public Health (No.2011KZ87).
Compliance with ethics guidelines
Chunquan Cai and Ouyan Shi declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by the any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(222 KB)

Accesses

Citations

Detail

Sections
Recommended

/