The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia

Jessica Fredericks, Ruibao Ren

PDF(393 KB)
PDF(393 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (4) : 452-461. DOI: 10.1007/s11684-013-0304-0
RESEARCH ARTICLE
RESEARCH ARTICLE

The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia

Author information +
History +

Abstract

BCR/ABL is the causative agent of chronic myelogenous leukemia (CML). Through structure/function analysis, several protein motifs have been determined to be important for the development of leukemogenesis. Tyrosine177 of BCR is a Grb2 binding site required for BCR/ABL-induced CML in mice. In the current study, we use a mouse bone marrow transduction/transplantation system to demonstrate that addition of oncogenic NRAS (NRASG12D) to a vector containing a BCR/ABLY177F mutant “rescues” the CML phenotype rapidly and efficiently. To further narrow down the pathways downstream of RAS that are responsible for this rescue effect, we utilize well-characterized RAS effector loop mutants and determine that the RAL pathway is important for rapid induction of CML. Inhibition of this pathway by a dominant negative RAL is capable of delaying disease progression. Results from the present study support the notion of RAL inhibition as a potential therapy for BCR/ABL-induced CML.

Keywords

BCR/ABL / chronic myelogenous leukemia (CML) / RAS / RAL

Cite this article

Download citation ▾
Jessica Fredericks, Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Front Med, 2013, 7(4): 452‒461 https://doi.org/10.1007/s11684-013-0304-0

References

[1]
Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature1973; 243(5405): 290-293
CrossRef Pubmed Google scholar
[2]
Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell1984; 36(1): 93-99
CrossRef Pubmed Google scholar
[3]
McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol1993; 13(12): 7587-7595
Pubmed
[4]
Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol2001; 21(3): 840-853
CrossRef Pubmed Google scholar
[5]
Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol1995; 15(10): 5531-5541
Pubmed
[6]
Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science1990; 247(4946): 1079-1082
CrossRef Pubmed Google scholar
[7]
He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood2002; 99(8): 2957-2968
CrossRef Pubmed Google scholar
[8]
Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA. A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol2004; 24(11): 4685-4695
CrossRef Pubmed Google scholar
[9]
Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell2002; 1(5): 479-492
CrossRef Pubmed Google scholar
[10]
Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell1995; 82(6): 981-988
CrossRef Pubmed Google scholar
[11]
Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood2000; 96(2): 664-670
Pubmed
[12]
Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene1998; 17(11 11 Reviews): 1395-1413
CrossRef Pubmed Google scholar
[13]
Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood2000; 96(10): 3343-3356
Pubmed
[14]
White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH. Multiple Ras functions can contribute to mammalian cell transformation. Cell1995; 80(4): 533-541
CrossRef Pubmed Google scholar
[15]
Campbell PM, Singh A, Williams FJ, Frantz K, Ulkü AS, Kelley GG, Der CJ. Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol2006; 407: 195-217
CrossRef Pubmed Google scholar
[16]
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta2007; 1773(8): 1196-1212
CrossRef Pubmed Google scholar
[17]
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene2007; 26(22): 3291-3310
CrossRef Pubmed Google scholar
[18]
Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell1997; 89(3): 457-467
CrossRef Pubmed Google scholar
[19]
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer2003; 3(1): 11-22
CrossRef Pubmed Google scholar
[20]
Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J1993; 12(1): 339-347
Pubmed
[21]
Feig LA. Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol2003; 13(8): 419-425
CrossRef Pubmed Google scholar
[22]
White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem1996; 271(28): 16439-16442
CrossRef Pubmed Google scholar
[23]
Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J1996; 15(4): 810-816
Pubmed
[24]
Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol2006; 16(24): 2385-2394
CrossRef Pubmed Google scholar
[25]
Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell2005; 7(6): 533-545
CrossRef Pubmed Google scholar
[26]
Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep2003; 4(8): 800-806
CrossRef Pubmed Google scholar
[27]
Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood2006; 108(7): 2349-2357
CrossRef Pubmed Google scholar
[28]
Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood1998; 92(10): 3829-3840
Pubmed
[29]
Tchevkina E, Agapova L, Dyakova N, Martinjuk A, Komelkov A, Tatosyan A. The small G-protein RalA stimulates metastasis of transformed cells. Oncogene2005; 24(3): 329-335
CrossRef Pubmed Google scholar
[30]
Omidvar N, Pearn L, Burnett AK, Darley RL. Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Mol Cell Biol2006; 26(10): 3966-3975
CrossRef Pubmed Google scholar
[31]
Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA1993; 90(18): 8392-8396
CrossRef Pubmed Google scholar
[32]
Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell Biol1999; 19(10): 6918-6928
Pubmed
[33]
Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood1998; 92(10): 3780-3792
Pubmed
[34]
Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science1990; 247(4944): 824-830
CrossRef Pubmed Google scholar
[35]
Joneson T, White MA, Wigler MH, Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science1996; 271(5250): 810-812
CrossRef Pubmed Google scholar
[36]
Hinoi T, Kishida S, Koyama S, Ikeda M, Matsuura Y, Kikuchi A. Post-translational modifications of Ras and Ral are important for the action of Ral GDP dissociation stimulator. J Biol Chem1996; 271(33): 19710-19716
CrossRef Pubmed Google scholar
[37]
Matsubara K, Kishida S, Matsuura Y, Kitayama H, Noda M, Kikuchi A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene1999; 18(6): 1303-1312
CrossRef Pubmed Google scholar
[38]
Plett PA, Frankovitz SM, Orschell CM. Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood2003; 102(6): 2285-2291
CrossRef Pubmed Google scholar
[39]
Fei J, Li Y, Zhu X, Luo X. miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS ONE2012; 7(3): e32834
CrossRef Pubmed Google scholar
[40]
Zhu X, Li Y, Luo X, Fei J. Inhibition of small GTPase RalA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells. Cell Signal2012; 24(6): 1134-1140
CrossRef Pubmed Google scholar
[41]
Chu S, Li L, Singh H, Bhatia R. BCR-tyrosine 177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res2007; 67(14): 7045-7053
CrossRef Pubmed Google scholar
[42]
de Bruyn KM, de Rooij J, Wolthuis RM, Rehmann H, Wesenbeek J, Cool RH, Wittinghofer AH, Bos JL. RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem2000; 275(38): 29761-29766
CrossRef Pubmed Google scholar
[43]
Shao H, Andres DA. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J Biol Chem2000; 275(35): 26914-26924
Pubmed
[44]
Wolthuis RM, Bos JL. Ras caught in another affair: the exchange factors for Ral. Curr Opin Genet Dev1999; 9(1): 112-117
CrossRef Pubmed Google scholar
[45]
González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell2005; 7(3): 219-226
CrossRef Pubmed Google scholar

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 81230055), Shanghai Excellent Science Leader Program (No. 12XD1403500), and the National Natural Science Foundation of China (Grant No. 81230055; to R.R.).
Compliance with ethics guidelines
Jessica Fredericks and Ruibao Ren declare that they have no conflicts of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(393 KB)

Accesses

Citations

Detail

Sections
Recommended

/