Monocyte subsets and their differentiation tendency after burn injury

Guangqing Wang, Zhaofan Xia

PDF(90 KB)
PDF(90 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (4) : 397-400. DOI: 10.1007/s11684-013-0298-7
MINI-REVIEW
MINI-REVIEW

Monocyte subsets and their differentiation tendency after burn injury

Author information +
History +

Abstract

Monocytes are critical effectors and regulators of immune response. Studying the nomenclature of monocyte subsets may be beneficial for understanding the complex function of monocytes in steady and inflammatory states. A monocyte has the potential to differentiate into dendritic cells or macrophages, and this behavior significantly changes in severely burned patients and mice. The findings in the present study may help enhance understanding on the perturbation of the immune system after severe burn injury.

Keywords

monocyte / differentiation / burn

Cite this article

Download citation ▾
Guangqing Wang, Zhaofan Xia. Monocyte subsets and their differentiation tendency after burn injury. Front Med, 2013, 7(4): 397‒400 https://doi.org/10.1007/s11684-013-0298-7

References

[1]
MuthuK, HeLK, MelstromK, SzilagyiA, GamelliRL, ShankarR. Perturbed bone marrow monocyte development following burn injury and sepsis promote hyporesponsive monocytes. J Burn Care Res2008; 29(1): 12-21
Pubmed
[2]
Ziegler-HeitbrockL, HoferTP. Toward a refined definition of monocyte subsets. Front Immunol2013; 4: 23
CrossRef Pubmed Google scholar
[3]
AncutaP, RaoR, MosesA, MehleA, ShawSK, LuscinskasFW, GabuzdaD. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med2003; 197(12): 1701-1707
CrossRef Pubmed Google scholar
[4]
Ziegler-HeitbrockL, AncutaP, CroweS, DalodM, GrauV, HartDN, LeenenPJ, LiuYJ, MacPhersonG, RandolphGJ, ScherberichJ, SchmitzJ, ShortmanK, SozzaniS, StroblH, ZembalaM, AustynJM, LutzMB. Nomenclature of monocytes and dendritic cells in blood. Blood2010; 116(16): e74-e80
CrossRef Pubmed Google scholar
[5]
WongKL, TaiJJ, WongWC, HanH, SemX, YeapWH, KourilskyP, WongSC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood2011; 118(5): e16-e31
CrossRef Pubmed Google scholar
[6]
ZawadaAM, RogacevKS, RotterB, WinterP, MarellRR, FliserD, HeineGH. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood2011; 118(12): e50-e61
CrossRef Pubmed Google scholar
[7]
PoehlmannH, SchefoldJC, Zuckermann-BeckerH, VolkHD, MeiselC. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care2009; 13(4): R119
CrossRef Pubmed Google scholar
[8]
SkinnerNA, MacIsaacCM, HamiltonJA, VisvanathanK. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin Exp Immunol2005; 141(2): 270-278
CrossRef Pubmed Google scholar
[9]
WestSD, GoldbergD, ZieglerA, KrencickiM, Du ClosTW, MoldC. Transforming growth factor-β, macrophage colony-stimulating factor and C-reactive protein levels correlate with CD14(high)CD16+ monocyte induction and activation in trauma patients. PLoS ONE2012; 7(12): e52406
CrossRef Pubmed Google scholar
[10]
SchmidI, BaldwinGC, JacobsEL, IsacescuV, NeagosN, GiorgiJV, GlaspyJA. Alterations in phenotype and cell-surface antigen expression levels of human monocytes: differential response to in vivo administration of rhM-CSF or rhGM-CSF. Cytometry1995; 22(2): 103-110
CrossRef Pubmed Google scholar
[11]
GeissmannF, ManzMG, JungS, SiewekeMH, MeradM, LeyK. Development of monocytes, macrophages and dendritic cells. Science2010; 327(5966): 656-661
CrossRef Pubmed Google scholar
[12]
KrutzikSR, TanB, LiH, OchoaMT, LiuPT, SharfsteinSE, GraeberTG, SielingPA, LiuYJ, ReaTH, BloomBR, ModlinRL. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med2005; 11(6): 653-660
CrossRef Pubmed Google scholar
[13]
Aguilar-RuizSR, Torres-AguilarH, González-DomínguezÉ, NarváezJ, González-PérezG, Vargas-AyalaG, Meraz-RíosMA, García-ZepedaEA, Sánchez-TorresC. Human CD16+ and CD16- monocyte subsets display unique effector properties in inflammatory conditions in vivo. J Leukoc Biol2011; 90(6): 1119-1131
CrossRef Pubmed Google scholar
[14]
BalboaL, RomeroMM, LabordeE, Sabio Y GarcíaCA, BasileJI, SchierlohP, YokoboriN, MusellaRM, CastagninoJ, de la BarreraS, SasiainMC, AlemánM, AlemánM. Impaired dendritic cell differentiation of CD16-positive monocytes in tuberculosis: role of p38 MAPK. Eur J Immunol2013; 43(2): 335-347
CrossRef Pubmed Google scholar
[15]
RandolphGJ, Sanchez-SchmitzG, LiebmanRM, SchäkelK. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med2002; 196(4): 517-527
CrossRef Pubmed Google scholar
[16]
D’ArpaN, Accardo-PalumboA, AmatoG, D’AmelioL, PileriD, CataldoV, MogaveroR, LombardoC, NapoliB, ConteF. Circulating dendritic cells following burn. Burns2009; 35(4): 513-518
CrossRef Pubmed Google scholar
[17]
WilliamsKN, SzilagyiA, HeLK, ConradP, HalerzM, GamelliRL, ShankarR, MuthumalaiappanK. Dendritic cell depletion in burn patients is regulated by MafB expression. J Burn Care Res2012; 33(6): 747-758
CrossRef Pubmed Google scholar
[18]
VenetF, TissotS, DebardAL, FaudotC, CrampéC, PachotA, AyalaA, MonneretG. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit Care Med2007; 35(8): 1910-1917
CrossRef Pubmed Google scholar
[19]
PoehlmannH, SchefoldJC, Zuckermann-BeckerH, VolkHD, MeiselC. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care2009; 13(4): R119
CrossRef Pubmed Google scholar
[20]
KobayashiM, JeschkeMG, ShigematsuK, AsaiA, YoshidaS, HerndonDN, SuzukiF. M2b monocytes predominated in peripheral blood of severely burned patients. J Immunol2010; 185(12): 7174-7179
CrossRef Pubmed Google scholar
[21]
KobayashiM, JeschkeMG, AsaiA, KogisoM, YoshidaS, HerndonDN, SuzukiF. Propranolol as a modulator of M2b monocytes in severely burned patients. J Leukoc Biol2011; 89(5): 797-803
CrossRef Pubmed Google scholar
[22]
RocherC, SinglaR, SingalPK, ParthasarathyS, SinglaDK. Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages. Can J Physiol Pharmacol2012; 90(7): 947-951
CrossRef Pubmed Google scholar
[23]
FoucherED, BlanchardS, PreisserL, GaroE, IfrahN, GuardiolaP, DelnesteY, JeanninP. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages: antagonistic effects of GM-CSF and IFNγ. PLoS ONE2013; 8(2): e56045
CrossRef Pubmed Google scholar
[24]
GeissmannF, JungS, LittmanDR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity2003; 19(1): 71-82
CrossRef Pubmed Google scholar
[25]
MuthuK, HeLK, SzilagyiA, StevensonJ, GamelliRL, ShankarR. Propranolol restores the tumor necrosis factor-alpha response of circulating inflammatory monocytes and granulocytes after burn injury and sepsis. J Burn Care Res2009; 30(1): 8-18
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(90 KB)

Accesses

Citations

Detail

Sections
Recommended

/