Telomeric impact of conventional chemotherapy

Yiming Lu, Waiian Leong, Olivier Guérin, Eric Gilson, Jing Ye

PDF(220 KB)
PDF(220 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (4) : 411-417. DOI: 10.1007/s11684-013-0293-z
REVIEW

Telomeric impact of conventional chemotherapy

Author information +
History +

Abstract

The increased level of chromosome instability in cancer cells, leading to aneuploidy and gross chromosomal rearrangements, is not only a driving force for oncogenesis but also can be the Achille’s heel of the disease since many chemotherapies (CT) kill cells by inducing a non-tolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplasic drugs. These results raise the interesting possibility that CT with genotoxic drugs preferentially target telomeres. In agreement with this view, accelerated shortening of telomere length has been described in blood lineage cells following high-dose CT (stem cell transplantation) or non-myeloablative CT. However, almost nothing is known on the consequences of this shortening in terms of telomere stability, senescence and on the development of second cancers or post-treatment aging-like syndromes in cancer survivors (cognitive defect, fertility impairment, etc.). In this article, we propose: (1) telomeres of cancer cells are preferential genomic targets of chemotherapies altering chromosome maintenance; (2) telomere functional parameters can be a surrogate marker of chemotherapy sensitivity and toxicity; (3) the use of anti-telomere molecule could greatly enhance the sensitivity to standards chemotherapies.

Keywords

telomere / antineoplasic drugs / conventional chemotherapies

Cite this article

Download citation ▾
Yiming Lu, Waiian Leong, Olivier Guérin, Eric Gilson, Jing Ye. Telomeric impact of conventional chemotherapy. Front Med, 2013, 7(4): 411‒417 https://doi.org/10.1007/s11684-013-0293-z

References

[1]
Xue W, Zender L, Mithing C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445(7128): 656-660
CrossRef Pubmed Google scholar
[2]
Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436(7054): 1186-1190
CrossRef Pubmed Google scholar
[3]
Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8(3): 151-160
CrossRef Pubmed Google scholar
[4]
Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M, Staszewsky L, Frapolli R, Stevens MF, Stoppacciaro A, Mottolese M, Antoniani B, Gilson E, Zupi G, Biroccio A. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res 2008; 14(22): 7284-7291
CrossRef Pubmed Google scholar
[5]
Biroccio A, Porru M, Rizzo A, Salvati E, D’Angelo C, Orlandi A, Passeri D, Franceschin M, Stevens MF, Gilson E, Beretta G, Zupi G, Pisano C, Zunino F, Leonetti C. DNA damage persistence as determinant of tumor sensitivity to the combination of Topo I inhibitors and telomere-targeting agents. Clin Cancer Res 2011; 17(8): 2227-2236
CrossRef Pubmed Google scholar
[6]
Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y, Biroccio A, Londoño-Vallejo A, Giraud-Panis MJ, Gilson E. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142(2): 230-242
CrossRef Pubmed Google scholar
[7]
Ourliac-Garnier I, Poulet A, Charif R, Amiard S, Magdinier F, Rezaï K, Gilson E, Giraud-Panis MJ, Bombard S. Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15(5): 641-654
CrossRef Pubmed Google scholar
[8]
Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98(6): 3381-3386
CrossRef Pubmed Google scholar
[9]
Snyder AR, Zhou J, Deng Z, Lieberman PM. Therapeutic doses of hydroxyurea cause telomere dysfunction and reduce TRF2 binding to telomeres. Cancer Biol Ther 2009; 8(12): 1136-1145
CrossRef Pubmed Google scholar
[10]
Hayashi MT, Cesare AJ, Fitzpatrick JA, Lazzerini-Denchi E, Karlseder J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19(4): 387-394
CrossRef Pubmed Google scholar
[11]
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-2110
CrossRef Pubmed Google scholar
[12]
Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol 2008; 9(9): 232
CrossRef Pubmed Google scholar
[13]
Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet 2007; 8(4): 299-309
CrossRef Pubmed Google scholar
[14]
Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science 2001; 292(5524): 2075-2077
CrossRef Pubmed Google scholar
[15]
Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer JF, Gilson E. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002; 3(11): 1055-1061
CrossRef Pubmed Google scholar
[16]
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798-801
CrossRef Pubmed Google scholar
[17]
Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008; 10(2): 228-236
CrossRef Pubmed Google scholar
[18]
Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R, Giulotto E, Azzalin CM. CpG-island promoters drive transcription of human telomeres. RNA 2009; 15(12): 2186-2194
CrossRef Pubmed Google scholar
[19]
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop (see comments). Cell 1999; 97(4): 503-514
CrossRef Pubmed Google scholar
[20]
Amiard S, Doudeau M, Pinte S, Poulet A, Lenain C, Faivre-Moskalenko C, Angelov D, Hug N, Vindigni A, Bouvet P, Paoletti J, Gilson E, Giraud-Panis MJ. A topological mechanism for TRF2-enhanced strand invasion. Nat Struct Mol Biol 2007; 14(2): 147-154
CrossRef Pubmed Google scholar
[21]
Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460(7251): 66-72
CrossRef Pubmed Google scholar
[22]
Martinez P, Thanasoula M, Carlos AR, Gómez-López G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 2010; 12(8): 768-780
CrossRef Pubmed Google scholar
[23]
Simonet T, Zaragosi LE, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res 2011; 21(7): 1028-1038
CrossRef Pubmed Google scholar
[24]
Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, Songyang Z. Human telomeric proteins occupy selective interstitial sites. Cell Res 2011; 21(7): 1013-1027
CrossRef Pubmed Google scholar
[25]
Brunori M, Luciano P, Gilson E, Géli V. The telomerase cycle: normal and pathological aspects. J Mol Med (Berl) 2005; 83(4): 244-257
CrossRef Pubmed Google scholar
[26]
Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28(2): 155-159
CrossRef Pubmed Google scholar
[27]
Klapper W, Krams M, Qian W, Janssen D, Parwaresch R. Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation. Br J Cancer 2003; 89(4): 713-719
CrossRef Pubmed Google scholar
[28]
Nakanishi K, Kawai T, Kumaki F, Hiroi S, Mukai M, Ikeda E, Koering CE, Gilson E. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003; 9(3): 1105-1111
Pubmed
[29]
Bellon M, Datta A, Brown M, Pouliquen JF, Couppie P, Kazanji M, Nicot C. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 2006; 119(9): 2090-2097
CrossRef Pubmed Google scholar
[30]
Biroccio A, Rizzo A, Elli R, Koering CE, Belleville A, Benassi B, Leonetti C, Stevens MF, D’Incalci M, Zupi G, Gilson E. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42(12): 1881-1888
Pubmed
[31]
Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21(2): 206-220
CrossRef Pubmed Google scholar
[32]
Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L, Mendez-Bermudez A, Poncet D, Grataroli R, de Rodenbeeke CT, Salvati E, Rizzo A, Zizza P, Ricoul M, Cognet C, Kuilman T, Duret H, Lépinasse F, Marvel J, Verhoeyen E, Cosset FL, Peeper D, Smyth MJ, Londoño-Vallejo A, Sabatier L, Picco V, Pages G, Scoazec JY, Stoppacciaro A, Leonetti C, Vivier E, Gilson E. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 2013; 15(7): 818-828
CrossRef Pubmed Google scholar
[33]
Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, Sperduti I, Stevens MF, D’Incalci M, Blasco M, Chiorino G, Bauwens S, Horard B, Gilson E, Stoppacciaro A, Zupi G, Biroccio A. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117(11): 3236-3247
CrossRef Pubmed Google scholar
[34]
Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8(10): 825-838
CrossRef Pubmed Google scholar
[35]
Bao K, Cohen SN. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc Natl Acad Sci USA 2004; 101(40): 14361-14366
CrossRef Pubmed Google scholar
[36]
Bankhead T, Kobryn K, Chaconas G. Unexpected twist: harnessing the energy in positive supercoils to control telomere resolution. Mol Microbiol 2006; 62(3): 895-905
CrossRef Pubmed Google scholar
[37]
Germe T, Miller K, Cooper JP. A non-canonical function of topoisomerase II in disentangling dysfunctional telomeres. EMBO J 2009; 28(18): 2803-2811
CrossRef Pubmed Google scholar
[38]
Klapper W, Qian W, Schulte C, Parwaresch R. DNA damage transiently increases TRF2 mRNA expression and telomerase activity. Leukemia 2003; 17(10): 2007-2015
CrossRef Pubmed Google scholar
[39]
Zhang YW, Zhang ZX, Miao ZH, Ding J. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. Mol Pharmacol 2008; 73(3): 824-832
CrossRef Pubmed Google scholar
[40]
Su CH, Chu WC, Lan KH, Li CP, Chao Y, Lin HC, Lee SD, Tsai YC, Lee WP. Gemcitabine causes telomere attrition by stabilizing TRF2. Eur J Cancer 2012; 48(18): 3465-3474
CrossRef Pubmed Google scholar
[41]
Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14(4): 355-365
CrossRef Pubmed Google scholar
[42]
Schröder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG, de Vries EG. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 2001; 84(10): 1348-1353
CrossRef Pubmed Google scholar
[43]
Rufer N, Brümmendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E. Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood 2001; 97(2): 575-577
CrossRef Pubmed Google scholar
[44]
Rocci A, Ricca I, Dellacasa C, Longoni P, Compagno M, Francese R, Lobetti Bodoni C, Manzini P, Caracciolo D, Boccadoro M, Ferrero D, Ladetto M, Carlo-Stella C, Tarella C. Long-term lymphoma survivors following high-dose chemotherapy and autograft: evidence of permanent telomere shortening in myeloid cells, associated with marked reduction of bone marrow hematopoietic stem cell reservoir. Exp Hematol 2007; 35(4): 673-681
CrossRef Pubmed Google scholar
[45]
Yoon SY, Sung HJ, Park KH, Choi IK, Kim SJ, Oh SC, Seo JH, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS. Telomere length shortening of peripheral blood mononuclear cells in solid-cancer patients undergoing standard-dose chemotherapy might be correlated with good treatment response and neutropenia severity. Acta Haematol 2007; 118(1): 30-37
CrossRef Pubmed Google scholar
[46]
Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C. The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 2011; 39(12): 1171-1181
CrossRef Pubmed Google scholar
[47]
González-Suárez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26(1): 114-117
CrossRef Pubmed Google scholar
[48]
Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11(5): 461-469
CrossRef Pubmed Google scholar
[49]
Mauch PM, Kalish LA, Marcus KC, Coleman CN, Shulman LN, Krill E, Come S, Silver B, Canellos GP, Tarbell NJ. Second malignancies after treatment for laparotomy staged IA-IIIB Hodgkin’s disease: long-term analysis of risk factors and outcome. Blood 1996; 87(9): 3625-3632
Pubmed
[50]
M’kacher R, Bennaceur-Griscelli A, Girinsky T, Koscielny S, Delhommeau F, Dossou J, Violot D, Leclercq E, Courtier MH, Béron-Gaillard N, Assaf E, Ribrag V, Bourhis J, Feneux D, Bernheim A, Parmentier C, Carde P. Telomere shortening and associated chromosomal instability in peripheral blood lymphocytes of patients with Hodgkin’s lymphoma prior to any treatment are predictive of second cancers. Int J Radiat Oncol Biol Phys 2007; 68(2): 465-471
CrossRef Pubmed Google scholar
[51]
Smith RE. Risk for the development of treatment-related acute myelocytic leukemia and myelodysplastic syndrome among patients with breast cancer: review of the literature and the National Surgical Adjuvant Breast and Bowel Project experience. Clin Breast Cancer 2003; 4(4): 273-279
[52]
Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY) 2011; 3(8): 782-793
Pubmed
[53]
Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol 2012; 30(3): 274-281
CrossRef Pubmed Google scholar
[54]
Quesnel C, Savard J, Ivers H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res Treat 2009; 116(1): 113-123
CrossRef Pubmed Google scholar
[55]
Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP. Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 2008; 18(19): 1489-1494
CrossRef Pubmed Google scholar
[56]
Poncet D, Belleville A, t’kint de Roodenbeke C, Roborel de Climens A, Ben Simon E, Merle-Beral H, Callet-Bauchu E, Salles G, Sabatier L, Delic J, Gilson E. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 2008; 111(4): 2388-2391
CrossRef Pubmed Google scholar
[57]
Augereau A, T’kint de Roodenbeke C, Simonet T, Bauwens S, Horard B, Callanan M, Leroux D, Jallades L, Salles G, Gilson E, Poncet D. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118(5): 1316-1322
CrossRef Pubmed Google scholar

Acknowledgements

The work in the JY lab is supported by National Natural Science Foundation of China (Grant Nos. 81270433, 81171846, and 81000875), Foundation for Young Scientist in Shanghai Municipal Health Bureau in China (Grant No.2010.24); Foundation for City Star of Science and Technology in Shanghai (Grant No. 11QA1404400).The work in the EG lab is supported by La Ligue Nationale Contre le Cancer (Équipe labélisée), l’Institut Nationale du Cancer (INCa, TELOFUN program), L’Agence Nationale de la Recherche (ANR, TELOREP program).
Compliance with ethics guidelines
Yiming Lu, Olivier Guérin, Eric Gilson, and Jing Ye declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(220 KB)

Accesses

Citations

Detail

Sections
Recommended

/