Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning
Tingting Wang, Shanglong Yao, Zhengyuan Xia, Michael G. Irwin
Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning
Systemic inflammatory response following myocardial ischemia-reperfusion injury (IRI) to a specific organ may cause injuries. Ischemic post-conditioning (IPostC) has emerged as a promising method for myocardial protection against IRI both in experimental and in clinical settings. Enhancement of endogenous nitric oxide (NO) is one of the major mechanisms by which IPostC confers cardioprotection. However, the sensitivity of the diabetic heart to IPostC is impaired and the underlying mechanism is unknown. Adiponectin (APN) is an adipocyte-derived plasma protein with anti-diabetic and anti-inflammatory properties. Plasma levels of APN are decreased in obese subjects and in patients with type 2 diabetes. APN supplementation has been shown to increase NO production and attenuate myocardial IRI in normal (non-diabetic) animals. However, the effect of APN on myocardial injury in diabetic subjects, especially its potential in restoring the sensitivity of the diabetic heart to IPostC has not been investigated. In the current paper, we discussed the possible reasons why the myocardium of diabetic subjects loses sensitivity to IPostC and also highlighted the potential effectiveness and mechanism of APN in restoring IPostC cardioprotection in diabetes. This review proposes to conduct studies that may facilitate the development of novel and optimal therapies to enhance cardioprotection in patients with severe diseases such as diabetes.
adiponectin / ischemic post-conditioning / ischemia reperfusion injury / diabetes
[1] |
Roffi M, Eberli FR. Diabetes and acute coronary syndromes. Best Pract Res Clin Endocrinol Metab 2009; 23(3): 305-316
CrossRef
Pubmed
Google scholar
|
[2] |
Andersen HR, Nielsen TT, Rasmussen K, Thuesen L, Kelbaek H, Thayssen P, Abildgaard U, Pedersen F, Madsen JK, Grande P, Villadsen AB, Krusell LR, Haghfelt T, Lomholt P, Husted SE, Vigholt E, Kjaergard HK, Mortensen LS ; DANAMI-2 Investigators. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 2003; 349(8): 733-742
CrossRef
Pubmed
Google scholar
|
[3] |
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-1136
CrossRef
Pubmed
Google scholar
|
[4] |
Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285(2): H579-H588
Pubmed
|
[5] |
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta 2007; 380(1-2): 24-30
CrossRef
Pubmed
Google scholar
|
[6] |
Pajvani UB, Scherer PE. Adiponectin: systemic contributor to insulin sensitivity. Curr Diab Rep 2003; 3(3): 207-213
CrossRef
Pubmed
Google scholar
|
[7] |
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20(6): 1595-1599
CrossRef
Pubmed
Google scholar
|
[8] |
Wang T, Qiao S, Lei S, Liu Y, Ng KF, Xu A, Lam KS, Irwin MG, Xia Z. N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats. PLoS ONE 2011; 6(8): e23967
CrossRef
Pubmed
Google scholar
|
[9] |
Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005; 11(10): 1096-1103
CrossRef
Pubmed
Google scholar
|
[10] |
Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 2007; 115(11): 1408-1416
CrossRef
Pubmed
Google scholar
|
[11] |
Liu X, Chen H, Zhan B, Xing B, Zhou J, Zhu H, Chen Z. Attenuation of reperfusion injury by renal ischemic postconditioning: the role of NO. Biochem Biophys Res Commun 2007; 359(3): 628-634
CrossRef
Pubmed
Google scholar
|
[12] |
Amour J, Brzezinska AK, Weihrauch D, Billstrom AR, Zielonka J, Krolikowski JG, Bienengraeber MW, Warltier DC, Pratt PFJ Jr, Kersten JR. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 2009; 110(2): 317-325
Pubmed
|
[13] |
Lecour S. Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 2009; 47(1): 32-40
CrossRef
Pubmed
Google scholar
|
[14] |
Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 2008; 79(1): 127-133
CrossRef
Pubmed
Google scholar
|
[15] |
Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 2006; 291(2): H827-H834
CrossRef
Pubmed
Google scholar
|
[16] |
Oshima Y, Fujio Y, Nakanishi T, Itoh N, Yamamoto Y, Negoro S, Tanaka K, Kishimoto T, Kawase I, Azuma J. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res 2005; 65(2): 428-435
CrossRef
Pubmed
Google scholar
|
[17] |
Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 2001; 98(16): 9050-9055
CrossRef
Pubmed
Google scholar
|
[18] |
Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 2009; 104(1): 15-18
CrossRef
Pubmed
Google scholar
|
[19] |
Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 2008; 102(1): 131-135
CrossRef
Pubmed
Google scholar
|
[20] |
Yin X, Zheng Y, Zhai X, Zhao X, Cai L.Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabetes Res 2012; 2012: 198048
CrossRef
Google scholar
|
[21] |
Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007; 49(2): 241-248
CrossRef
Pubmed
Google scholar
|
[22] |
Roffi M, Eberli FR. Diabetes and acute coronary syndromes. Best Pract Res Clin Endocrinol Metab 2009; 23(3): 305-316
CrossRef
Pubmed
Google scholar
|
[23] |
Nagareddy PR, Xia Z, McNeill JH, MacLeod KM. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am J Physiol Heart Circ Physiol 2005; 289(5): H2144-H2152
CrossRef
Pubmed
Google scholar
|
[24] |
Xia Z, Nagareddy PR, Guo Z, Zhang W, McNeill JH. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats. Free Radic Res 2006; 40(2): 175-184
CrossRef
Pubmed
Google scholar
|
[25] |
Nagareddy PR, Xia Z, MacLeod KM, McNeill JH. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats. J Cardiovasc Pharmacol 2006; 47(4): 513-520
CrossRef
Pubmed
Google scholar
|
[26] |
Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y. Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 2007; 100(7): 1089-1098
CrossRef
Pubmed
Google scholar
|
[27] |
Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84(2): 201-208
CrossRef
Pubmed
Google scholar
|
[28] |
Gross ER, Hsu AK, Gross GJ. Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 2007; 56(1): 127-136
CrossRef
Pubmed
Google scholar
|
[29] |
Siasos G, Tousoulis D, Kollia C, Oikonomou E, Siasou Z, Stefanadis C, Papavassiliou AG. Adiponectin and cardiovascular disease: mechanisms and new therapeutic approaches. Curr Med Chem 2012; 19(8): 1193-1209
CrossRef
Pubmed
Google scholar
|
[30] |
Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360(9326): 57-58
CrossRef
Pubmed
Google scholar
|
[31] |
Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007; 56(5): 1387-1394
CrossRef
Pubmed
Google scholar
|
[32] |
Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, Cheng KK, Wang Y, Vanhoutte PM, Xu A. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 2010; 59(11): 2949-2959
CrossRef
Pubmed
Google scholar
|
[33] |
Cai XJ, Chen L, Li L, Feng M, Li X, Zhang K, Rong YY, Hu XB, Zhang MX, Zhang Y, Zhang M. Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol Endocrinol 2010; 24(1): 218-228
CrossRef
Pubmed
Google scholar
|
[34] |
Liao W, Yu C, Wen J, Jia W, Li G, Ke Y, Zhao S, Campell W. Adiponectin induces interleukin-6 production and activates STAT3 in adult mouse cardiac fibroblasts. Biol Cell 2009; 101(5): 263-272
CrossRef
Pubmed
Google scholar
|
[35] |
Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP. Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 2003; 278(34): 31629-31639
CrossRef
Pubmed
Google scholar
|
[36] |
Shin MJ, Lee YP, Kim DW, An JJ, Jang SH, Cho SM, Sheen SH, Lee HR, Kweon HY, Kang SW, Lee KG, Park J, Eum WS, Cho YJ, Choi SY. Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw264.7 cells. BMB Rep 2010; 43(1): 40-45
CrossRef
Pubmed
Google scholar
|
[37] |
Pilon G, Dallaire P, Marette A. Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 2004; 279(20): 20767-20774
CrossRef
Pubmed
Google scholar
|
[38] |
Hwang JT, Kwon DY, Park OJ, Kim MS. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr 2008; 2(4): 323-326
CrossRef
Pubmed
Google scholar
|
[39] |
Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 2008; 295(4): H1580-H1586
CrossRef
Pubmed
Google scholar
|
[40] |
Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, Walsh K. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. J Mol Cell Cardiol 2010; 49(2): 210-220
CrossRef
Pubmed
Google scholar
|
[41] |
Szmitko PE, Teoh H, Stewart DJ, Verma S. Adiponectin and cardiovascular disease: state of the art? Am J Physiol Heart Circ Physiol 2007; 292(4): H1655-H1663
CrossRef
Pubmed
Google scholar
|
[42] |
Guo Z, Xia Z, Jiang J, McNeill JH. Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-L-cysteine. Am J Physiol Heart Circ Physiol 2007; 292(4): H1728-H1736
CrossRef
Pubmed
Google scholar
|
[43] |
Peng T, Lu X, Lei M, Feng Q. Endothelial nitric-oxide synthase enhances lipopolysaccharide-stimulated tumor necrosis factor-alpha expression via cAMP-mediated p38 MAPK pathway in cardiomyocytes. J Biol Chem 2003; 278(10): 8099-8105
CrossRef
Pubmed
Google scholar
|
[44] |
Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 2008; 118(19): 1915-1919
CrossRef
Pubmed
Google scholar
|
[45] |
Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 2002; 90(7): 807-813
CrossRef
Pubmed
Google scholar
|
[46] |
L’Abbate A, Neglia D, Vecoli C, Novelli M, Ottaviano V, Baldi S, Barsacchi R, Paolicchi A, Masiello P, Drummond GS, McClung JA, Abraham NG. Beneficial effect of heme oxygenase-1 expression on myocardial ischemia-reperfusion involves an increase in adiponectin in mildly diabetic rats. Am J Physiol Heart Circ Physiol 2007; 293(6): H3532-H3541
CrossRef
Pubmed
Google scholar
|
[47] |
Xia Z, Vanhoutte PM. Nitric oxide and protection against cardiac ischemia. Curr Pharm Des 2011; 17(18): 1774-1782
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |