Progress on molecular biomarkers and classification of malignant gliomas

Chuanbao Zhang, Zhaoshi Bao, Wei Zhang, Tao Jiang

PDF(135 KB)
PDF(135 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (2) : 150-156. DOI: 10.1007/s11684-013-0267-1
REVIEW
REVIEW

Progress on molecular biomarkers and classification of malignant gliomas

Author information +
History +

Abstract

Gliomas are the most common primary intracranial tumors in adults. Anaplastic gliomas (WHO grade III) and glioblastomas (WHO grade IV) represent the major groups of malignant gliomas in the brain. Several diagnostic, predictive, and prognostic biomarkers for malignant gliomas have been reported over the last few decades, and these markers have made great contributions to the accuracy of diagnosis, therapeutic decision making, and prognosis of patients. However, heterogeneity in patient outcomes may still be observed, which highlights the insufficiency of a classification system based purely on histopathology. Great efforts have been made to incorporate new information about the molecular landscape of gliomas into novel classifications that may potentially guide treatment. In this review, we summarize three distinctive biomarkers, three most commonly altered pathways, and three classifications based on microarray data in malignant gliomas.

Keywords

malignant glioma / molecular biomarker / IDH1 / MGMT / molecular classification

Cite this article

Download citation ▾
Chuanbao Zhang, Zhaoshi Bao, Wei Zhang, Tao Jiang. Progress on molecular biomarkers and classification of malignant gliomas. Front Med, 2013, 7(2): 150‒156 https://doi.org/10.1007/s11684-013-0267-1

References

[1]
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol2007; 114(2): 97-109
CrossRef Pubmed Google scholar
[2]
Jones DT, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci2012; 69(11): 1799-1811
CrossRef Pubmed Google scholar
[3]
Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H. Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol2004; 14(2): 131-136
CrossRef Pubmed Google scholar
[4]
Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol2005; 64(6): 479-489
Pubmed
[5]
Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin2010; 60(3): 166-193
CrossRef Pubmed Google scholar
[6]
Lawrence YR, Mishra MV, Werner-Wasik M, Andrews DW, Showalter TN, Glass J, Shen X, Symon Z, Dicker AP. Improving prognosis of glioblastoma in the 21st century: who has benefited most? Cancer2012; 118(17): 4228-4234
Pubmed
[7]
Wang Y, Li S, Chen L, You G, Bao Z, Yan W, Shi Z, Chen Y, Yao K, Zhang W, Kang C, Jiang T. Glioblastoma with an oligodendroglioma component: distinct clinical behavior, genetic alterations, and outcome. Neuro-oncol2012; 14(4): 518-525
CrossRef Pubmed Google scholar
[8]
Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem1999; 274(43): 30527-30533
CrossRef Pubmed Google scholar
[9]
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science2008; 321(5897): 1807-1812
CrossRef Pubmed Google scholar
[10]
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. N Engl J Med2009; 360(8): 765-773
CrossRef Pubmed Google scholar
[11]
Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol2009; 174(4): 1149-1153
CrossRef Pubmed Google scholar
[12]
Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res2009; 15(19): 6002-6007
CrossRef Pubmed Google scholar
[13]
van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P, Frenay M, Tijssen CC, Lacombe D, Idbaih A, van Marion R, Kros JM, Dinjens WN, Gorlia T, Sanson M. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res2010; 16(5): 1597-1604
CrossRef Pubmed Google scholar
[14]
Shibahara I, Sonoda Y, Kanamori M, Saito R, Yamashita Y, Kumabe T, Watanabe M, Suzuki H, Kato S, Ishioka C, Tominaga T. IDH1/2 gene status defines the prognosis and molecular profiles in patients with grade III gliomas. Int J Clin Oncol2012; 17(6): 551-561
Pubmed
[15]
Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol2009; 118(4): 469-474
CrossRef Pubmed Google scholar
[16]
Capper D, Sahm F, Hartmann C, Meyermann R, von Deimling A, Schittenhelm J. Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol2010; 34(8): 1199-1204
CrossRef Pubmed Google scholar
[17]
Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN. Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol2009; 68(12): 1319-1325
CrossRef Pubmed Google scholar
[18]
Ichimura K, Pearson DM, Kocialkowski S, Bäcklund LM, Chan R, Jones DT, Collins VP. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro-oncol2009; 11(4): 341-347
CrossRef Pubmed Google scholar
[19]
Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science2009; 324(5924): 261-265
CrossRef Pubmed Google scholar
[20]
Dang L, White D W, Gross S, Bennett B D, Bittinger M A, Driggers E M, Fantin V R, Jang H G, Jin S, Keenan M C, Marks K M, Prins R M, Ward P S, Yen K E, Liau L M, Rabinowitz J D, Cantley L C, Thompson C B, Vander Heiden M G, Su S M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature2009;462(7274):739-744.
CrossRef Pubmed Google scholar
[21]
Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA2011; 108(8): 3270-3275
CrossRef Pubmed Google scholar
[22]
Jeuken JW, von Deimling A, Wesseling P. Molecular pathogenesis of oligodendroglial tumors. J Neurooncol2004; 70(2): 161-181
CrossRef Pubmed Google scholar
[23]
Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, Cahill DP, McLendon R, Riggins G, Velculescu VE, Oba-Shinjo SM, Marie SK, Vogelstein B, Bigner D, Yan H, Papadopoulos N, Kinzler KW. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science2011; 333(6048): 1453-1455
CrossRef Pubmed Google scholar
[24]
Scheie D, Cvancarova M, Mørk S, Skullerud K, Andresen PA, Benestad I, Helseth E, Meling T, Beiske K. Can morphology predict 1p/19q loss in oligodendroglial tumours? Histopathology2008; 53(5): 578-587
CrossRef Pubmed Google scholar
[25]
Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F, Sabel MC, Koeppen S, Ketter R, Meyermann R, Rapp M, Meisner C, Kortmann RD, Pietsch T, Wiestler OD, Ernemann U, Bamberg M, Reifenberger G, von Deimling A, Weller M. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol2009; 27(35): 5874-5880
CrossRef Pubmed Google scholar
[26]
Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D, Buckner J, Fink K, Souhami L, Laperierre N, Mehta M, Curran W. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol2006; 24(18): 2707-2714
CrossRef Pubmed Google scholar
[27]
van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, Taphoorn MJ, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Haaxma-Reiche H, Kros JM, van Kouwenhoven MC, Vecht CJ, Allgeier A, Lacombe D, Gorlia T. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol2006; 24(18): 2715-2722
CrossRef Pubmed Google scholar
[28]
Kouwenhoven MCM, Kros JM, French PJ, Biemond-ter Stege EM, Graveland WJ, Taphoorn MJB, Brandes AA, van den Bent MJ. 1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment. Eur J Cancer2006; 42(15): 2499-2503
CrossRef Pubmed Google scholar
[29]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature2008; 455(7216): 1061-1068
CrossRef Pubmed Google scholar
[30]
Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA1992; 89(7): 2965-2969
CrossRef Pubmed Google scholar
[31]
Hurtt MR, Moossy J, Donovan-Peluso M, Locker J. Amplification of epidermal growth factor receptor gene in gliomas: histopathology and prognosis. J Neuropathol Exp Neurol1992; 51(1): 84-90
CrossRef Pubmed Google scholar
[32]
Lino MM, Merlo A. PI3Kinase signaling in glioblastoma. J Neurooncol2011; 103(3): 417-427
CrossRef Pubmed Google scholar
[33]
Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci2009; 16(6): 748-754
CrossRef Pubmed Google scholar
[34]
Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia2010; 12(9): 675-684
Pubmed
[35]
Aldape KD, Ballman K, Furth A, Buckner JC, Giannini C, Burger PC, Scheithauer BW, Jenkins RB, James CD. Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol2004; 63(7): 700-707
Pubmed
[36]
Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro Oncol2002; 4(3): 196-211
Pubmed
[37]
Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci2009; 100(12): 2235-2241
CrossRef Pubmed Google scholar
[38]
Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther2008; 7(9): 1321-1325
CrossRef Pubmed Google scholar
[39]
Busch C, Geisler J, Knappskog S, Lillehaug JR, Lønning PE. Alterations in the p53 pathway and p16INK4a expression predict overall survival in metastatic melanoma patients treated with dacarbazine. J Invest Dermatol2010; 130(10): 2514-2516
CrossRef Pubmed Google scholar
[40]
Silber JR, Bobola MS, Blank A, Chamberlain MC. O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta2012; 1826(1): 71-82
Pubmed
[41]
Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med2005; 352(10): 997-1003
CrossRef Pubmed Google scholar
[42]
Olson RA, Brastianos PK, Palma DA. Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. J Neurooncol2011; 105(2): 325-335
CrossRef Pubmed Google scholar
[43]
Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, Eisenhauer E, Belanger K, Brandes AA, Allgeier A, Lacombe D, Stupp R. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol2008; 9(1): 29-38
CrossRef Pubmed Google scholar
[44]
Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-oncol2010; 12(2): 116-121
CrossRef Pubmed Google scholar
[45]
Minniti G, Salvati M, Arcella A, Buttarelli F, D’Elia A, Lanzetta G, Esposito V, Scarpino S, Maurizi Enrici R, Giangaspero F. Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide. J Neurooncol2011; 102(2): 311-316
CrossRef Pubmed Google scholar
[46]
Combs SE, Rieken S, Wick W, Abdollahi A, von Deimling A, Debus J, Hartmann C. Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back? Radiat Oncol2011; 6(1): 115
CrossRef Pubmed Google scholar
[47]
Brandes AA, Franceschi E, Tosoni A, Bartolini S, Bacci A, Agati R, Ghimenton C, Turazzi S, Talacchi A, Skrap M, Marucci G, Volpin L, Morandi L, Pizzolitto S, Gardiman M, Andreoli A, Calbucci F, Ermani M. O(6)-methylguanine DNA-methyltransferase methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence: clinical implications. Neuro-oncol2010; 12(3): 283-288
CrossRef Pubmed Google scholar
[48]
Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res2004; 10(6): 1871-1874
CrossRef Pubmed Google scholar
[49]
van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, Jeuken JW, Ibdaih A, Brandes AA, Taphoorn MJ, Frenay M, Lacombe D, Gorlia T, Dinjens WN, Kros JM. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol2009; 27(35): 5881-5886
CrossRef Pubmed Google scholar
[50]
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell2006; 9(3): 157-173
CrossRef Pubmed Google scholar
[51]
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell2010; 17(1): 98-110
CrossRef Pubmed Google scholar
[52]
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA1999; 96(15): 8681-8686
CrossRef Pubmed Google scholar
[53]
Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell2010; 17(5): 510-522
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from National High Technology Research and Development Program (No.2012AA02A508), International Science and Technology Cooperation Program (No. 2012DFA30470), and National Natural Science Foundation of China (Grant No. 81201993).
Compliance with ethics guidelines
Chuanbao Zhang, Zhaoshi Bao, Wei Zhang, and Tao Jiang declare that they have no conflict of interest.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/