From gut changes to type 2 diabetes remission after gastric bypass surgeries

Bing Li, Xinrong Zhou, Jiarui Wu, Huarong Zhou

PDF(224 KB)
PDF(224 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (2) : 191-200. DOI: 10.1007/s11684-013-0258-2
REVIEW
REVIEW

From gut changes to type 2 diabetes remission after gastric bypass surgeries

Author information +
History +

Abstract

Increasing evidence suggests that the gut may influence the host’s metabolism and ultimately change the outcomes of type 2 diabetes mellitus (T2DM). We review the evidence on the relationship between the gut and T2DM remission after gastric bypass surgery, and discuss the potential mechanisms underlying the above relationship: gut anatomical rearrangement, microbial composition changes, altered gut cells, and gut hormone modulation. However, the exact changes and their relative importance in the metabolic improvements after gastric bypass surgery remain to be further clarified. Elucidating the precise metabolic mechanisms of T2DM resolution after bypass surgery will help to reveal the molecular mechanisms of pathogenesis, and facilitate the development of novel diagnoses and preventative interventions for this common disease.

Keywords

gastric bypass / T2DM / gut

Cite this article

Download citation ▾
Bing Li, Xinrong Zhou, Jiarui Wu, Huarong Zhou. From gut changes to type 2 diabetes remission after gastric bypass surgeries. Front Med, 2013, 7(2): 191‒200 https://doi.org/10.1007/s11684-013-0258-2

References

[1]
Huang ES, Basu A, O’Grady M, Capretta JC. Projecting the future diabetes population size and related costs for the U.S. Diabetes Care2009; 32(12): 2225-2229
[2]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care2004; 27(5): 1047-1053
CrossRef Pubmed Google scholar
[3]
Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE; the Diabetes Prevention Program Research Group. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet2012; 379(9833): 2243-2251
CrossRef Pubmed Google scholar
[4]
Hamman RF. Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Metab Rev1992; 8(4): 287-338
CrossRef Pubmed Google scholar
[5]
Polonsky KS, Sturis J, Bell GI. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus- a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med1996; 334(12): 777-783
CrossRef Pubmed Google scholar
[6]
James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res2001; 9(Suppl 4): 228S-233S
CrossRef Pubmed Google scholar
[7]
Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA2002; 288(22): 2793-2796
CrossRef Pubmed Google scholar
[8]
Fisher BL, Schauer P. Medical and surgical options in the treatment of severe obesity. Am J Surg2002; 184(6 Supplement 2): 9S-16S
CrossRef Pubmed Google scholar
[9]
Martins C, Strømmen M, Stavne OA, Nossum R, Mårvik R, Kulseng B. Bariatric surgery versus lifestyle interventions for morbid obesity—changes in body weight, risk factors and comorbidities at 1 year. Obes Surg2011; 21(7): 841-849
CrossRef Pubmed Google scholar
[10]
Jørgensen NB, Jacobsen SH, Dirksen C, Bojsen-Møller KN, Naver L, Hvolris L, Clausen TR, Wulff BS, Worm D, Lindqvist Hansen D, Madsbad S, Holst JJ. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab2012; 303(1): E122-E131
CrossRef Pubmed Google scholar
[11]
Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care2012; 35(7): 1420-1428
CrossRef Pubmed Google scholar
[12]
Dixon JB, le Roux CW, Rubino F, Zimmet P. Bariatric surgery for type 2 diabetes. Lancet2012; 379(9833): 2300-2311
CrossRef Google scholar
[13]
Carlsson LM, Peltonen M, Ahlin S, Anveden Å, Bouchard C, Carlsson B, Jacobson P, Lönroth H, Maglio C, Näslund I, Pirazzi C, Romeo S, Sjöholm K, Sjöström E, Wedel H, Svensson PA, Sjöström L. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med2012; 367(8): 695-704
CrossRef Pubmed Google scholar
[14]
Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science2005; 307(5717): 1909-1914
CrossRef Pubmed Google scholar
[15]
Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg2000; 232(4): 515-529
CrossRef Pubmed Google scholar
[16]
Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, Dohm L. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg1995; 222(3): 339-352
CrossRef Pubmed Google scholar
[17]
Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A. Biliopancreatic diversion. World J Surg1998; 22(9): 936-946
CrossRef Pubmed Google scholar
[18]
Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology2007; 132(6): 2253-2271
CrossRef Pubmed Google scholar
[19]
Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab2004; 89(6): 2608-2615
CrossRef Pubmed Google scholar
[20]
Rubino F, R’bibo SL, del Genio F, Mazumdar M, McGraw TE. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol2010; 6(2): 102-109
CrossRef Pubmed Google scholar
[21]
Boza C, Muñoz R, Yung E, Milone L, Gagner M. Sleeve gastrectomy with ileal transposition (SGIT) induces a significant weight loss and diabetes improvement without exclusion of the proximal intestine. J Gastrointest Surg2011; 15(6): 928-934
CrossRef Pubmed Google scholar
[22]
Escalona A, Yáñez R, Pimentel F, Galvao M, Ramos AC, Turiel D, Boza C, Awruch D, Gersin K, Ibáñez L. Initial human experience with restrictive duodenal-jejunal bypass liner for treatment of morbid obesity. Surg Obes Relat Dis2010; 6(2): 126-131
CrossRef Pubmed Google scholar
[23]
Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature2006; 444(7121): 854-859
CrossRef Pubmed Google scholar
[24]
Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell2007; 129(2): 251-262
CrossRef Pubmed Google scholar
[25]
Lam TKT. Neuronal regulation of homeostasis by nutrient sensing. Nat Med2010; 16(4): 392-395
CrossRef Pubmed Google scholar
[26]
Imeryüz N, Yeğen BÇ, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol1997; 273(4 Pt 1): G920-G927
Pubmed
[27]
Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology1992; 102(5): 1654-1659
Pubmed
[28]
Ogawa N, Yamaguchi H, Shimbara T, Toshinai K, Kakutani M, Yonemori F, Nakazato M. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Neurosci Lett2008; 433(1): 38-42
CrossRef Pubmed Google scholar
[29]
Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GWC, Lam TKT. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med2012; 18(6): 950-955
CrossRef Pubmed Google scholar
[30]
Hansen EN, Tamboli RA, Isbell JM, Saliba J, Dunn JP, Marks-Shulman PA, Abumrad NN. Role of the foregut in the early improvement in glucose tolerance and insulin sensitivity following Roux-en-Y gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol2011; 300(5): G795-G802
CrossRef Pubmed Google scholar
[31]
Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res2012; 178(1): 33-39
CrossRef Pubmed Google scholar
[32]
Boza C, Gagner M, Devaud N, Escalona A, Muñoz R, Gandarillas M. Laparoscopic sleeve gastrectomy with ileal transposition (SGIT): A new surgical procedure as effective as gastric bypass for weight control in a porcine model. Surg Endosc2008; 22(4): 1029-1034
CrossRef Pubmed Google scholar
[33]
Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab2005; 288(2): E447-E453
CrossRef Pubmed Google scholar
[34]
Mason EE. Ilial transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg1999; 9(3): 223-228
CrossRef Pubmed Google scholar
[35]
Holst JJ. Glucagon-like peptide 1 (GLP-1): an intestinal hormone, signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab1999; 10(6): 229-235
CrossRef Pubmed Google scholar
[36]
Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology1996; 137(7): 2968-2978
CrossRef Pubmed Google scholar
[37]
Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos-Flier E, Mun EC, Pihlajamaki J, Auwerx J, Goldfine AB. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring)2009; 17(9): 1671-1677
CrossRef Pubmed Google scholar
[38]
Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science2001; 294(5548): 1866-1870
CrossRef Pubmed Google scholar
[39]
Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab2009; 10(3): 167-177
CrossRef Pubmed Google scholar
[40]
Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, Bekker JHR, Ghatei MA, Bloom SR, Walters JRF, Welbourn R, le Roux CW. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology2012; 153(8): 3613-3619
CrossRef Pubmed Google scholar
[41]
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun2005; 329(1): 386-390
CrossRef Pubmed Google scholar
[42]
Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care2005; 8(4): 445-449
CrossRef Pubmed Google scholar
[43]
Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, Pillot B, Fauveau V, Aubert R, Viollet B, Foretz M, Leclerc J, Duchampt A, Zitoun C, Thorens B, Magnan C, Mithieux G, Andreelli F. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab2008; 8(3): 201-211
CrossRef Pubmed Google scholar
[44]
Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, Kirwan JP, Schauer PR. Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond)2010; 34(3): 462-471
CrossRef Pubmed Google scholar
[45]
Hayes MT, Foo J, Besic V, Tychinskaya Y, Stubbs RS. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass? Obes Surg2011; 21(6): 759-762
CrossRef Pubmed Google scholar
[46]
Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature2012; 486(7402): 207-214
CrossRef Pubmed Google scholar
[47]
Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med2011; 62(1): 361-380
CrossRef Pubmed Google scholar
[48]
Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol2007; 73(4): 1073-1078
CrossRef Pubmed Google scholar
[49]
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA2004; 101(44): 15718-15723
CrossRef Pubmed Google scholar
[50]
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA2008; 105(43): 16767-16772
CrossRef Pubmed Google scholar
[51]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature2006; 444(7122): 1022-1023
CrossRef Pubmed Google scholar
[52]
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA2009; 106(7): 2365-2370
CrossRef Pubmed Google scholar
[53]
Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond)2008; 32(11): 1720-1724
CrossRef Pubmed Google scholar
[54]
Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science2010; 328(5975): 228-231
CrossRef Pubmed Google scholar
[55]
Wei X, Yang Z, Rey FE, Ridaura VK, Davidson NO, Gordon JI, Semenkovich CF. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe2012; 11(2): 140-152
CrossRef Pubmed Google scholar
[56]
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science2005; 308(5728): 1635-1638
CrossRef Pubmed Google scholar
[57]
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature2009; 457(7228): 480-484
CrossRef Pubmed Google scholar
[58]
Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y, EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring)2009; 17(10): 1906-1915
CrossRef Pubmed Google scholar
[59]
Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A, Moleres A, Delgado M, Veiga OL, García-Fuentes M, Redondo CG, Sanz Y. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond)2009; 33(7): 758-767
CrossRef Pubmed Google scholar
[60]
Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao C, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol2010; 61(1): 69-78
CrossRef Pubmed Google scholar
[61]
Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE2010; 5(2): e9085
CrossRef Pubmed Google scholar
[62]
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature2012; 490(7418): 55-60
CrossRef Pubmed Google scholar
[63]
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes2010; 59(12): 3049-3057
CrossRef Pubmed Google scholar
[64]
Pictet RL, Rall LB, Phelps P, Rutter WJ. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science1976; 191(4223): 191-192
CrossRef Pubmed Google scholar
[65]
Fontaine J, Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J Embryol Exp Morphol1977; 41(1): 209-222
Pubmed
[66]
Sander M, German MS. The β cell transcription factors and development of the pancreas. J Mol Med (Berl)1997; 75(5): 327-340
CrossRef Pubmed Google scholar
[67]
Edlund H. Transcribing pancreas. Diabetes1998; 47(12): 1817-1823
CrossRef Pubmed Google scholar
[68]
St-Onge L, Wehr R, Gruss P. Pancreas development and diabetes. Curr Opin Genet Dev1999; 9(3): 295-300
CrossRef Pubmed Google scholar
[69]
Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, Wright CVE, Gu G. Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol2010; 339(1): 26-37
CrossRef Pubmed Google scholar
[70]
Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA2000; 97(4): 1607-1611
CrossRef Pubmed Google scholar
[71]
Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet2000; 24(1): 36-44
CrossRef Pubmed Google scholar
[72]
Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development2000; 127(16): 3533-3542
Pubmed
[73]
Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev2002; 16(12): 1488-1497
CrossRef Pubmed Google scholar
[74]
Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol2004; 270(2): 443-454
CrossRef Pubmed Google scholar
[75]
Schonhoff SE, Giel-Moloney M, Leiter AB. Minireview: Development and differentiation of gut endocrine cells. Endocrinology2004; 145(6): 2639-2644
CrossRef Pubmed Google scholar
[76]
Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development2002; 129(10): 2447-2457
Pubmed
[77]
Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell2008; 132(2): 197-207
CrossRef Pubmed Google scholar
[78]
Kitamura T, Kitamura YI, Kobayashi M, Kikuchi O, Sasaki T, Depinho RA, Accili D. Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1. Mol Cell Biol2009; 29(16): 4417-4430
CrossRef Pubmed Google scholar
[79]
Lam EWF, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans2006; 34( 5): 722-726
CrossRef Pubmed Google scholar
[80]
Al-Masri M, Krishnamurthy M, Li J, Fellows GF, Dong HH, Goodyer CG, Wang R. Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia2010; 53(4): 699-711
CrossRef Pubmed Google scholar
[81]
Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet2012; 44(4): 406-412
CrossRef Pubmed Google scholar
[82]
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature1999; 402(6762): 656-660
CrossRef Pubmed Google scholar
[83]
Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology2000; 141(11): 4255-4261
CrossRef Pubmed Google scholar
[84]
Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther2012; 135(3): 316-326
CrossRef Pubmed Google scholar
[85]
Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun2000; 279(3): 909-913
CrossRef Pubmed Google scholar
[86]
Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab2000; 85(12): 4908-4911
CrossRef Pubmed Google scholar
[87]
Nagaya N, Kojima M, Uematsu M, Yamagishi M, Hosoda H, Oya H, Hayashi Y, Kangawa K. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol2001; 280(5): R1483-R1487
Pubmed
[88]
Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab2002; 87(6): 2988
CrossRef Pubmed Google scholar
[89]
Volante M, Allìa E, Gugliotta P, Funaro A, Broglio F, Deghenghi R, Muccioli G, Ghigo E, Papotti M. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab2002; 87(3): 1300-1308
CrossRef Pubmed Google scholar
[90]
Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab2001; 86(10): 5083-5086
CrossRef Pubmed Google scholar
[91]
Damjanovic SS, Lalic NM, Pesko PM, Petakov MS, Jotic A, Miljic D, Lalic KS, Lukic L, Djurovic M, Djukic VB. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J Clin Endocrinol Metab2006; 91(7): 2574-2581
CrossRef Pubmed Google scholar
[92]
Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring)2008; 16(2): 298-305
CrossRef Pubmed Google scholar
[93]
Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, Restuccia NL, Bessler M. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring)2006; 14(9): 1553-1561
CrossRef Pubmed Google scholar
[94]
Morínigo R, Casamitjana R, Moizé V, Lacy AM, Delgado S, Gomis R, Vidal J. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res2004; 12(7): 1108-1116
CrossRef Pubmed Google scholar
[95]
Leonetti F, Silecchia G, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, Perrotta N, Bacci V, Basso MS, Basso N, Di Mario U. Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab2003; 88(9): 4227-4231
CrossRef Pubmed Google scholar
[96]
Lin E, Gletsu N, Fugate K, McClusky D, Gu LH, Zhu JL, Ramshaw BJ, Papanicolaou DA, Ziegler TR, Smith CD. The effects of gastric surgery on systemic ghrelin levels in the morbidly obese. Arch Surg2004; 139(7): 780-784
CrossRef Pubmed Google scholar
[97]
Tritos NA, Mun E, Bertkau A, Grayson R, Maratos-Flier E, Goldfine A. Serum ghrelin levels in response to glucose load in obese subjects post-gastric bypass surgery. Obes Res2003; 11(8): 919-924
CrossRef Pubmed Google scholar
[98]
le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lönroth H, Fändriks L, Ghatei MA, Bloom SR, Olbers T. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg2007; 246(5): 780-785
CrossRef Pubmed Google scholar
[99]
Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab2005; 90(1): 359-365
CrossRef Pubmed Google scholar
[100]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology2007; 132(6): 2131-2157
CrossRef Pubmed Google scholar
[101]
Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology2007; 132(6): 2116-2130
CrossRef Pubmed Google scholar
[102]
Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature2006; 444(7121): 854-859
CrossRef Pubmed Google scholar
[103]
Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab2011; 96(7): 2227-2235
CrossRef Pubmed Google scholar
[104]
Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet1987; 330(8571): 1300-1304
CrossRef Pubmed Google scholar
[105]
Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest2004; 113(4): 635-645
Pubmed
[106]
Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest1967; 46(12): 1954-1962
CrossRef Pubmed Google scholar
[107]
Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care2007; 30(7): 1709-1716
CrossRef Pubmed Google scholar
[108]
Dirksen C, Hansen DL, Madsbad S, Hvolris LE, Naver LS, Holst JJ, Worm D. Postprandial diabetic glucose tolerance is normalized by gastric bypass feeding as opposed to gastric feeding and is associated with exaggerated GLP-1 secretion: a case report. Diabetes Care2010; 33(2): 375-377
CrossRef Pubmed Google scholar
[109]
Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJB. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg2006; 93(2): 210-215
CrossRef Pubmed Google scholar
[110]
de Carvalho CP, Marin DM, de Souza AL, Pareja JC, Chaim EA, de Barros Mazon S, da Silva CA, Geloneze B, Muscelli E, Alegre SM. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg2009; 19(3): 313-320
CrossRef Pubmed Google scholar
[111]
Goldfine AB, Mun EC, Devine E, Bernier R, Baz-Hecht M, Jones DB, Schneider BE, Holst JJ, Patti ME. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab2007; 92(12): 4678-4685
CrossRef Pubmed Google scholar
[112]
Holdstock C, Zethelius B, Sundbom M, Karlsson FA, Edén Engström B. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes (Lond)2008; 32(11): 1640-1646
CrossRef Pubmed Google scholar
[113]
Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis2007; 3(6): 597-601
CrossRef Pubmed Google scholar
[114]
Laferrère B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab2008; 93(7): 2479-2485
CrossRef Pubmed Google scholar
[115]
le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg2006; 243(1): 108-114
CrossRef Pubmed Google scholar
[116]
Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, Delgado S, Casamitjana R, Vidal J. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab2006; 91(5): 1735-1740
CrossRef Pubmed Google scholar
[117]
Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases. Surg Obes Relat Dis2007; 3(2): 195-197
CrossRef Pubmed Google scholar
[118]
Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology1985; 89(5): 1070-1077
Pubmed
[119]
Kervran A, Blache P, Bataille D. Distribution of oxyntomodulin and glucagon in the gastrointestinal tract and the plasma of the rat. Endocrinology1987; 121(2): 704-713
CrossRef Pubmed Google scholar
[120]
Ghatei MA, Uttenthal LO, Christofides ND, Bryant MG, Bloom SR. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J Clin Endocrinol Metab1983; 57(3): 488-495
CrossRef Pubmed Google scholar
[121]
Polak JM, Bloom S, Coulling I, Pearse AGE. Immunofluorescent localization of enteroglucagon cells in the gastrointestinal tract of the dog. Gut1971; 12(4): 311-318
CrossRef Pubmed Google scholar
[122]
Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Oliván B, Teixeira J, McGinty J, Rother KI. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab2010; 95(8): 4072-4076
CrossRef Pubmed Google scholar
[123]
Holst JJ. Enteroglucagon. Annu Rev Physiol1997; 59(1): 257-271
CrossRef Pubmed Google scholar
[124]
Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab2003; 88(10): 4696-4701
CrossRef Pubmed Google scholar
[125]
Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, Wren AM, Frost GS, Meeran K, Ghatei MA, Bloom SR. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes2005; 54(8): 2390-2395
CrossRef Pubmed Google scholar
[126]
Dakin CL, Gunn I, Small CJ, Edwards CMB, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology2001; 142(10): 4244-4250
CrossRef Pubmed Google scholar
[127]
Parlevliet ET, Heijboer AC, Schröder-van der Elst JP, Havekes LM, Romijn JA, Pijl H, Corssmit EPM. Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am J Physiol Endocrinol Metab2008; 294(1): E142-E147
CrossRef Pubmed Google scholar
[128]
Maida A, Lovshin JA, Baggio LL, Drucker DJ. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances β-cell function but does not inhibit gastric emptying in mice. Endocrinology2008; 149(11): 5670-5678
CrossRef Pubmed Google scholar
[129]
Kerr BD, Flatt PR, Gault VA. (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol2010; 80(11): 1727-1735
CrossRef Pubmed Google scholar
[130]
Lundberg JM, Tatemoto K, Terenius L, Hellström PM, Mutt V, Hökfelt T, Hamberger B. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci USA1982; 79(14): 4471-4475
CrossRef Pubmed Google scholar
[131]
Böttcher G, Sjölund K, Ekblad E, Håkanson R, Schwartz TW, Sundler F. Coexistence of peptide YY and glicentin immunoreactivity in endocrine cells of the gut. Regul Pept1984; 8(4): 261-266
CrossRef Pubmed Google scholar
[132]
Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J Clin Endocrinol Metab2005; 90(12): 6386-6391
CrossRef Pubmed Google scholar
[133]
Alvarez Bartolomé M, Borque M, Martinez-Sarmiento JM, Aparicio E, Hernández C, Cabrerizo L, Fernández-Represa JA. Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty. Obes Surg2002; 12(3): 324-327
CrossRef Pubmed Google scholar
[134]
Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature2002; 418(6898): 650-654
CrossRef Pubmed Google scholar
[135]
Viardot A, Heilbronn LK, Herzog H, Gregersen S, Campbell LV. Abnormal postprandial PYY response in insulin sensitive nondiabetic subjects with a strong family history of type 2 diabetes. Int J Obes (Lond)2008; 32(6): 943-948
CrossRef Pubmed Google scholar
[136]
Pittner RA, Moore CX, Bhavsar SP, Gedulin BR, Smith PA, Jodka CM, Parkes DG, Paterniti JR, Srivastava VP, Young AA. Effects of PYY[3-36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord2004; 28(8): 963-971
CrossRef Pubmed Google scholar
[137]
Boey D, Heilbronn L, Sainsbury A, Laybutt R, Kriketos A, Herzog H, Campbell LV. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides2006; 40(5): 317-324
CrossRef Pubmed Google scholar
[138]
Berthoud HR, Shin AC, Zheng H. Obesity surgery and gut-brain communication. Physiol Behav2011; 105(1): 106-119
CrossRef Pubmed Google scholar

Acknowledgements

We thank Katsuhisa Horimoto for helpful discussions. This work was supported by grants from the National Basic Research Program of China (973 Program, 2011CB504003 to H.Z.), the National Natural Science Foundation of China (Grant No. 61134013 to H.Z., No. 81070657 to H.Z.), and NN-CAS Research Foundation (NNCAS-2009-1 to H.Z.).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/