FGF23 associated bone diseases

Eryuan Liao

Front. Med. ›› 2013, Vol. 7 ›› Issue (1) : 65 -80.

PDF (359KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (1) : 65 -80. DOI: 10.1007/s11684-013-0254-6
REVIEW
REVIEW

FGF23 associated bone diseases

Author information +
History +
PDF (359KB)

Abstract

Recently, fibroblast growth factor 23 (FGF23) has sparked widespread interest because of its potential role in regulating phosphate and vitamin D metabolism. In this review, we summarized the FGF superfamily, the mechanism of FGF23 on phosphate and vitamin D metabolism, and the FGF23 related bone disease.

Keywords

fibroblast growth factor 23 / FGF receptor / phosphate metabolism / Klotho / bone disease

Cite this article

Download citation ▾
Eryuan Liao. FGF23 associated bone diseases. Front. Med., 2013, 7(1): 65-80 DOI:10.1007/s11684-013-0254-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. Adv Exp Med Biol2012; 728: 1–24

[2]

Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. FGF23/Klotho axis: phosphorus, mineral metabolism and beyond. Cytokine Growth Factor Rev2012; 23(1–2): 37–46

[3]

Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr2012; 22(1): 61–86

[4]

Jones SA. Physiology of FGF15/19. Adv Exp Med Biol2012; 728: 171–182

[5]

Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev2012; 26(4): 312–324

[6]

Silver J, Naveh-Many T. FGF23 and the parathyroid. Adv Exp Med Biol2012; 728: 92–99

[7]

Razzaque MS. FGF23, klotho and vitamin D interactions: What have we learned from in vivo mouse genetics studies? Adv Exp Med Biol2012; 728: 84–91

[8]

Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology2005; 146(12): 5358–5364

[9]

Burnett SM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res2006; 21(8): 1187–1196

[10]

Rodríguez M, López I, Muñoz J, Aguilera-Tejero E, Almaden Y. FGF23 and mineral metabolism, implications in CKD-MBD. Nefrologia2012; 32(3): 275–278

[11]

Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev2012; 92(1): 131–155

[12]

Kienitz T, Ventz M, Kaminsky E, Quinkler M. Novel PHEX nonsense mutation in a patient with X-linked hypophosphatemic rickets and review of current therapeutic regimens. Exp Clin Endocrinol Diabetes2011; 119(7): 431–435

[13]

Bernheim J, Benchetrit S. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases. Nephrol Dial Transplant2011; 26(8): 2433–2438

[14]

Kuro-o M. Klotho and βKlotho. Adv Exp Med Biol2012; 728: 25–40

[15]

Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol2007; 292(2): F769–F779

[16]

Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science2005; 310(5747): 490–493

[17]

Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA2008; 105(28): 9805–9810

[18]

Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y. alpha-Klotho as a regulator of calcium homeostasis. Science2007; 316(5831): 1615–1618

[19]

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J2010; 24(9): 3438–3450

[20]

Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem2004; 279(11): 9777–9784

[21]

Hayes G, Busch A, Lötscher M, Waldegger S, Lang F, Verrey F, Biber J, Murer H. Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J Biol Chem1994; 269(39): 24143–24149

[22]

Rakugi H, Matsukawa N, Ishikawa K, Yang J, Imai M, Ikushima M, Maekawa Y, Kida I, Miyazaki J, Ogihara T. Anti-oxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine2007; 31(1): 82–87

[23]

Papaconstantinou J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol2009; 299(1): 89–100

[24]

Diepeveen SH, Verhoeven GH, van der Palen J, Dikkeschei BL, van Tits LJ, Kolsters G, Offerman JJ, Bilo HJ, Stalenhoef AF. Oxidative stress in patients with end-stage renal disease prior to the start of renal replacement therapy. Nephron Clin Pract2004; 98(1): c3–c7

[25]

Voormolen N, Noordzij M, Grootendorst DC, Beetz I, Sijpkens YW, van Manen JG, Boeschoten EW, Huisman RM, Krediet RT, Dekker FW; PREPARE study group. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant2007; 22(10): 2909–2916

[26]

Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant2009; 24(9): 2792–2796

[27]

Gordon PL, Frassetto LA. Management of osteoporosis in CKD Stages 3 to 5. Am J Kidney Dis2010; 55(5): 941–956

[28]

Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine2009; 35(3): 341–346

[29]

Nagai R, Saito Y, Ohyama Y, Aizawa H, Suga T, Nakamura T, Kurabayashi M, Kuroo M. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci2000; 57(5): 738–746

[30]

Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro-o M, Nabeshima Y, Nagai R, Kurabayashi M. Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol2002; 89(2): 149–156

[31]

Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, Xie Y, Drezner MK. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest2008; 118(2): 722–734

[32]

Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 2009; 24(11): 1879–1888

[33]

Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Xie Y, Gao T, Drezner MK, Bonewald LF, Feng JQ. Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J Bone Miner Res2011; 26(5): 1047–1056

[34]

Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res2011; 26(2): 331–340

[35]

Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life2011; 63(4): 240–247

[36]

Murer H, Biber J. Phosphate transport in the kidney. J Nephrol2010; 23(Suppl 16): S145–S151

[37]

Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto K. The roles of Na/Pi-II transporters in phosphate metabolism. Bone2009; 45(Suppl 1): S2–S7

[38]

Biber J, Hernando N, Forster I, Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch2009; 458(1): 39–52

[39]

Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol2007; 27(5): 503–515

[40]

Laroche M, Boyer JF. Phosphate diabetes, tubular phosphate reabsorption and phosphatonins. Joint Bone Spine2005; 72(5): 376–381

[41]

Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. Hyperphosphatemia of chronic kidney disease. Kidney Int2008; 74(2): 148–157

[42]

Prié D, Ureña Torres P, Friedlander G. Latest findings in phosphate homeostasis. Kidney Int2009; 75(9): 882–889

[43]

Wolf M. Fibroblast growth factor 23 and the future of phosphorus management. Curr Opin Nephrol Hypertens2009; 18(6): 463–468

[44]

Wahl P, Wolf M. FGF23 in chronic kidney disease. Adv Exp Med Biol2012; 728: 107–125

[45]

Silver J. Molecular mechanisms of secondary hyperparathyroidism. Nephrol Dial Transplant2000; 15(Suppl 5): 2–7

[46]

Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol2010; 299(4): F882–F889

[47]

Saji F, Shiizaki K, Shimada S, Okada T, Kunimoto K, Sakaguchi T, Hatamura I, Shigematsu T. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron, Physiol2009; 111(4): 59–66

[48]

Günther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature2000; 406(6792): 199–203

[49]

Mughal MZ. Rickets. Curr Osteoporos Rep2011; 9(4): 291–299

[50]

Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab2011; 25(4): 531–541

[51]

Fukumoto S, Shimizu Y. Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab2011; 29(5): 507–514

[52]

Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS ONE2012; 7(9): e44161

[53]

Bergwitz C, Jüppner H. FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol2012; 728: 41–64

[54]

Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol2012; 27(9):1477–1487

[55]

Kinoshita Y, Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, Fujita T. Mutational analysis of patients with FGF23-related hypophosphatemic rickets. Eur J Endocrinol2012; 167(2): 165–172

[56]

Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res2012; 318(9): 1040–1048

[57]

Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab2012; 30(1): 1–9

[58]

Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer2011; 18(3): R53–R77

[59]

Owen C, Chen F, Flenniken AM, Osborne LR, Ichikawa S, Adamson SL, Rossant J, Aubin JE. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. J Cell Biochem2012; 113(7): 2432–2441

[60]

Khaliq W, Cheripalli P, Tangella K. Tumor-induced osteomalacia (TIO): atypical presentation. South Med J2011; 104(5): 348–350

[61]

van der Rest C, Cavalier E, Kaux JF, Krzesinski JM, Hustinx R, Reginster JY, Delanaye P. Tumor-induced osteomalacia: the tumor may stay hidden! Clin Biochem2011; 44(14-15): 1264–1266

[62]

Magen D, Berger L, Coady M J, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe J Y, Zelikovic I, Skorecki K. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med2010; 362(12): 1102–1109

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (359KB)

4274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/