FGF23 associated bone diseases
Eryuan Liao
FGF23 associated bone diseases
Recently, fibroblast growth factor 23 (FGF23) has sparked widespread interest because of its potential role in regulating phosphate and vitamin D metabolism. In this review, we summarized the FGF superfamily, the mechanism of FGF23 on phosphate and vitamin D metabolism, and the FGF23 related bone disease.
fibroblast growth factor 23 / FGF receptor / phosphate metabolism / Klotho / bone disease
[1] |
Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. Adv Exp Med Biol2012; 728: 1–24
CrossRef
Pubmed
Google scholar
|
[2] |
Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. FGF23/Klotho axis: phosphorus, mineral metabolism and beyond. Cytokine Growth Factor Rev2012; 23(1–2): 37–46
CrossRef
Pubmed
Google scholar
|
[3] |
Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr2012; 22(1): 61–86
CrossRef
Pubmed
Google scholar
|
[4] |
Jones SA. Physiology of FGF15/19. Adv Exp Med Biol2012; 728: 171–182
CrossRef
Pubmed
Google scholar
|
[5] |
Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev2012; 26(4): 312–324
CrossRef
Pubmed
Google scholar
|
[6] |
Silver J, Naveh-Many T. FGF23 and the parathyroid. Adv Exp Med Biol2012; 728: 92–99
CrossRef
Pubmed
Google scholar
|
[7] |
Razzaque MS. FGF23, klotho and vitamin D interactions: What have we learned from in vivo mouse genetics studies? Adv Exp Med Biol2012; 728: 84–91
CrossRef
Pubmed
Google scholar
|
[8] |
Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology2005; 146(12): 5358–5364
CrossRef
Pubmed
Google scholar
|
[9] |
Burnett SM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res2006; 21(8): 1187–1196
CrossRef
Pubmed
Google scholar
|
[10] |
Rodríguez M, López I, Muñoz J, Aguilera-Tejero E, Almaden Y. FGF23 and mineral metabolism, implications in CKD-MBD. Nefrologia2012; 32(3): 275–278
Pubmed
|
[11] |
Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev2012; 92(1): 131–155
CrossRef
Pubmed
Google scholar
|
[12] |
Kienitz T, Ventz M, Kaminsky E, Quinkler M. Novel PHEX nonsense mutation in a patient with X-linked hypophosphatemic rickets and review of current therapeutic regimens. Exp Clin Endocrinol Diabetes2011; 119(7): 431–435
CrossRef
Pubmed
Google scholar
|
[13] |
Bernheim J, Benchetrit S. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases. Nephrol Dial Transplant2011; 26(8): 2433–2438
CrossRef
Pubmed
Google scholar
|
[14] |
Kuro-o M. Klotho and βKlotho. Adv Exp Med Biol2012; 728: 25–40
CrossRef
Pubmed
Google scholar
|
[15] |
Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol2007; 292(2): F769–F779
CrossRef
Pubmed
Google scholar
|
[16] |
Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science2005; 310(5747): 490–493
CrossRef
Pubmed
Google scholar
|
[17] |
Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA2008; 105(28): 9805–9810
CrossRef
Pubmed
Google scholar
|
[18] |
Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y. alpha-Klotho as a regulator of calcium homeostasis. Science2007; 316(5831): 1615–1618
CrossRef
Pubmed
Google scholar
|
[19] |
Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J2010; 24(9): 3438–3450
CrossRef
Pubmed
Google scholar
|
[20] |
Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem2004; 279(11): 9777–9784
CrossRef
Pubmed
Google scholar
|
[21] |
Hayes G, Busch A, Lötscher M, Waldegger S, Lang F, Verrey F, Biber J, Murer H. Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J Biol Chem1994; 269(39): 24143–24149
Pubmed
|
[22] |
Rakugi H, Matsukawa N, Ishikawa K, Yang J, Imai M, Ikushima M, Maekawa Y, Kida I, Miyazaki J, Ogihara T. Anti-oxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine2007; 31(1): 82–87
CrossRef
Pubmed
Google scholar
|
[23] |
Papaconstantinou J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol2009; 299(1): 89–100
CrossRef
Pubmed
Google scholar
|
[24] |
Diepeveen SH, Verhoeven GH, van der Palen J, Dikkeschei BL, van Tits LJ, Kolsters G, Offerman JJ, Bilo HJ, Stalenhoef AF. Oxidative stress in patients with end-stage renal disease prior to the start of renal replacement therapy. Nephron Clin Pract2004; 98(1): c3–c7
CrossRef
Pubmed
Google scholar
|
[25] |
Voormolen N, Noordzij M, Grootendorst DC, Beetz I, Sijpkens YW, van Manen JG, Boeschoten EW, Huisman RM, Krediet RT, Dekker FW; PREPARE study group. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant2007; 22(10): 2909–2916
CrossRef
Pubmed
Google scholar
|
[26] |
Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant2009; 24(9): 2792–2796
CrossRef
Pubmed
Google scholar
|
[27] |
Gordon PL, Frassetto LA. Management of osteoporosis in CKD Stages 3 to 5. Am J Kidney Dis2010; 55(5): 941–956
CrossRef
Pubmed
Google scholar
|
[28] |
Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine2009; 35(3): 341–346
CrossRef
Pubmed
Google scholar
|
[29] |
Nagai R, Saito Y, Ohyama Y, Aizawa H, Suga T, Nakamura T, Kurabayashi M, Kuroo M. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci2000; 57(5): 738–746
CrossRef
Pubmed
Google scholar
|
[30] |
Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro-o M, Nabeshima Y, Nagai R, Kurabayashi M. Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol2002; 89(2): 149–156
CrossRef
Pubmed
Google scholar
|
[31] |
Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, Xie Y, Drezner MK. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest2008; 118(2): 722–734
Pubmed
|
[32] |
Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 2009; 24(11): 1879–1888
CrossRef
Pubmed
Google scholar
|
[33] |
Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Xie Y, Gao T, Drezner MK, Bonewald LF, Feng JQ. Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J Bone Miner Res2011; 26(5): 1047–1056
CrossRef
Pubmed
Google scholar
|
[34] |
Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res2011; 26(2): 331–340
CrossRef
Pubmed
Google scholar
|
[35] |
Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life2011; 63(4): 240–247
CrossRef
Pubmed
Google scholar
|
[36] |
Murer H, Biber J. Phosphate transport in the kidney. J Nephrol2010; 23(Suppl 16): S145–S151
Pubmed
|
[37] |
Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto K. The roles of Na/Pi-II transporters in phosphate metabolism. Bone2009; 45(Suppl 1): S2–S7
CrossRef
Pubmed
Google scholar
|
[38] |
Biber J, Hernando N, Forster I, Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch2009; 458(1): 39–52
CrossRef
Pubmed
Google scholar
|
[39] |
Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol2007; 27(5): 503–515
CrossRef
Pubmed
Google scholar
|
[40] |
Laroche M, Boyer JF. Phosphate diabetes, tubular phosphate reabsorption and phosphatonins. Joint Bone Spine2005; 72(5): 376–381
CrossRef
Pubmed
Google scholar
|
[41] |
Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. Hyperphosphatemia of chronic kidney disease. Kidney Int2008; 74(2): 148–157
CrossRef
Pubmed
Google scholar
|
[42] |
Prié D, Ureña Torres P, Friedlander G. Latest findings in phosphate homeostasis. Kidney Int2009; 75(9): 882–889
CrossRef
Pubmed
Google scholar
|
[43] |
Wolf M. Fibroblast growth factor 23 and the future of phosphorus management. Curr Opin Nephrol Hypertens2009; 18(6): 463–468
CrossRef
Pubmed
Google scholar
|
[44] |
Wahl P, Wolf M. FGF23 in chronic kidney disease. Adv Exp Med Biol2012; 728: 107–125
CrossRef
Pubmed
Google scholar
|
[45] |
Silver J. Molecular mechanisms of secondary hyperparathyroidism. Nephrol Dial Transplant2000; 15(Suppl 5): 2–7
CrossRef
Pubmed
Google scholar
|
[46] |
Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol2010; 299(4): F882–F889
CrossRef
Pubmed
Google scholar
|
[47] |
Saji F, Shiizaki K, Shimada S, Okada T, Kunimoto K, Sakaguchi T, Hatamura I, Shigematsu T. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron, Physiol2009; 111(4): 59–66
CrossRef
Google scholar
|
[48] |
Günther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature2000; 406(6792): 199–203
CrossRef
Pubmed
Google scholar
|
[49] |
Mughal MZ. Rickets. Curr Osteoporos Rep2011; 9(4): 291–299
CrossRef
Pubmed
Google scholar
|
[50] |
Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab2011; 25(4): 531–541
CrossRef
Pubmed
Google scholar
|
[51] |
Fukumoto S, Shimizu Y. Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab2011; 29(5): 507–514
CrossRef
Pubmed
Google scholar
|
[52] |
Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS ONE2012; 7(9): e44161
CrossRef
Pubmed
Google scholar
|
[53] |
Bergwitz C, Jüppner H. FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol2012; 728: 41–64
CrossRef
Pubmed
Google scholar
|
[54] |
Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol2012; 27(9):1477–1487
|
[55] |
Kinoshita Y, Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, Fujita T. Mutational analysis of patients with FGF23-related hypophosphatemic rickets. Eur J Endocrinol2012; 167(2): 165–172
Pubmed
|
[56] |
Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res2012; 318(9): 1040–1048
CrossRef
Pubmed
Google scholar
|
[57] |
Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab2012; 30(1): 1–9
CrossRef
Pubmed
Google scholar
|
[58] |
Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer2011; 18(3): R53–R77
CrossRef
Pubmed
Google scholar
|
[59] |
Owen C, Chen F, Flenniken AM, Osborne LR, Ichikawa S, Adamson SL, Rossant J, Aubin JE. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. J Cell Biochem2012; 113(7): 2432–2441
CrossRef
Pubmed
Google scholar
|
[60] |
Khaliq W, Cheripalli P, Tangella K. Tumor-induced osteomalacia (TIO): atypical presentation. South Med J2011; 104(5): 348–350
CrossRef
Pubmed
Google scholar
|
[61] |
van der Rest C, Cavalier E, Kaux JF, Krzesinski JM, Hustinx R, Reginster JY, Delanaye P. Tumor-induced osteomalacia: the tumor may stay hidden! Clin Biochem2011; 44(14-15): 1264–1266
CrossRef
Pubmed
Google scholar
|
[62] |
Magen D, Berger L, Coady M J, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe J Y, Zelikovic I, Skorecki K. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med2010; 362(12): 1102–1109
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |