Pharmacogenomics can improve antipsychotic treatment in schizophrenia

Qingqing Xu, Xi Wu, Yuyu Xiong, Qinghe Xing, Lin He, Shengying Qin

PDF(175 KB)
PDF(175 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (2) : 180-190. DOI: 10.1007/s11684-013-0249-3
REVIEW
REVIEW

Pharmacogenomics can improve antipsychotic treatment in schizophrenia

Author information +
History +

Abstract

Schizophrenia is a widespread mental disease with a prevalence of about 1% in the world population, and heritability of up to 80%. Drug therapy is an important approach to treating the disease. However, the curative effect of antipsychotic is far from satisfactory in terms of tolerability and side effects. Many studies have indicated that about 30% of the patients exhibit little or no improvements associated with antipsychotics. The response of individual patients who are given the same dose of the same drug varies considerably. In addition, antipsychotic drugs are often accompanied by adverse drug reactions (ADRs), which can cause considerable financial loss in addition to the obvious societal harm. So, it is strongly recommended that personalized medicine should be implemented both to improve drug efficacy and to minimize adverse events and toxicity. There is therefore a need for pharmacogenomic studies into the factors affecting response of schizophrenia patients to antipsychotic drugs to provide informed guidance for clinicians. Individual differences in drug response is due to a combination of many complex factors including ADEM (absorption, distribution, metabolism, excretion) process, transporting, binding with receptor and intracellular signal transduction. Pharmacogenetic and pharmacogenomic studies have successfully identified genetic variants that contribute to this interindividual variability in antipsychotics response. In addition, epigenetic factors such as methylation of DNA and regulation by miRNA have also been reported to play an important role in the complex interactions between the multiple genes and environmental factors which influence individual drug response phenotypes in patients. In this review, we will focus on the latest research on polymorphisms of candidate genes that code for drug metabolic enzymes (CYP2D6, CYP1A2, CYP3A4, etc.), drug transporters (mainly ABCB1) and neurotransmitter receptors (dopamine receptors and serotonin receptors, etc.). We also discuss the genome-wide pharmacogenomic study of schizophrenia and review the current state of knowledge on epigenetics and potential clinical applications.

Keywords

pharmacogenomics / epigenetics / schizophrenia / antipsychotics

Cite this article

Download citation ▾
Qingqing Xu, Xi Wu, Yuyu Xiong, Qinghe Xing, Lin He, Shengying Qin. Pharmacogenomics can improve antipsychotic treatment in schizophrenia. Front Med, 2013, 7(2): 180‒190 https://doi.org/10.1007/s11684-013-0249-3

References

[1]
Schultze-Lutter F. Subjective symptoms of schizophrenia in research and the clinic: the basic symptom concept. Schizophr Bull2009; 35(1): 5-8
CrossRef Pubmed Google scholar
[2]
Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci2009; 10(1): 48-58
CrossRef Pubmed Google scholar
[3]
Phan SV, Kreys TJ. Adjunct mirtazapine for negative symptoms of schizophrenia. Pharmacotherapy2011; 31(10): 1017-1030
CrossRef Pubmed Google scholar
[4]
Hovington CL, Lepage M. Neurocognition and neuroimaging of persistent negative symptoms of schizophrenia. Expert Rev Neurother2012; 12(1): 53-69
CrossRef Pubmed Google scholar
[5]
Zhang JP, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol2011; 7(1): 9-37
CrossRef Pubmed Google scholar
[6]
Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry2007; 12(8): 707-747
CrossRef Pubmed Google scholar
[7]
Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med2010; 363(4): 301-304
CrossRef Pubmed Google scholar
[8]
Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, Zhang F, Chen J, Zhou G, Ji W, Li B, Xu Y, Liu D, Wang P, Yang P, Liu B, Sun W, Wan C, Qin S, He G, Steinberg S, Cichon S, Werge T, Sigurdsson E, Tosato S, Palotie A, Nöthen MM, Rietschel M, Ophoff RA, Collier DA, Rujescu D, Clair DS, Stefansson H, Stefansson K, Ji J, Wang Q, Li W, Zheng L, Zhang H, Feng G, He L. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet2011; 43(12): 1224-1227
CrossRef Pubmed Google scholar
[9]
Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, Li WQ, Zhang YL, Zhang Y, Ma CC, Du B, Wang LF, Ren YQ, Yang YF, Hu XF, Wang Y, Deng W, Tan LW, Tan YL, Chen Q, Xu GM, Yang GG, Zuo XB, Yan H, Ruan YY, Lu TL, Han X, Ma XH, Wang Y, Cai LW, Jin C, Zhang HY, Yan J, Mi WF, Yin XY, Ma WB, Liu Q, Kang L, Sun W, Pan CY, Shuang M, Yang FD, Wang CY, Yang JL, Li KQ, Ma X, Li LJ, Yu X, Li QZ, Huang X, Lv LX, Li T, Zhao GP, Huang W, Zhang XJ, Zhang D. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet2011; 43(12): 1228-1231
CrossRef Pubmed Google scholar
[10]
Leucht S, Heres S, Kissling W, Davis JM. Evidence-based pharmacotherapy of schizophrenia. Int J Neuropsychopharmacol2011; 14(2): 269-284
CrossRef Pubmed Google scholar
[11]
Foussias G, Remington G. Antipsychotics and schizophrenia: from efficacy and effectiveness to clinical decision-making. Can J Psychiatry2010; 55(3): 117-125
Pubmed
[12]
Hill SK, Bishop JR, Palumbo D, Sweeney JA. Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother2010; 10(1): 43-57
CrossRef Pubmed Google scholar
[13]
Guo X, Fang M, Zhai J, Wang B, Wang C, Hu B, Sun X, Lv L, Lu Z, Ma C, Guo T, Xie S, Twamley EW, Jin H, Zhao J. Effectiveness of maintenance treatments with atypical and typical antipsychotics in stable schizophrenia with early stage: 1-year naturalistic study. Psychopharmacology (Berl)2011; 216(4): 475-484
CrossRef Pubmed Google scholar
[14]
Citrome L. A systematic review of meta-analyses of the efficacy of oral atypical antipsychotics for the treatment of adult patients with schizophrenia. Expert Opin Pharmacother2012; 13(11): 1545-1573
CrossRef Pubmed Google scholar
[15]
Crossley NA, Constante M, McGuire P, Power P. Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: meta-analysis. Br J Psychiatry2010; 196(6): 434-439
CrossRef Pubmed Google scholar
[16]
De Hert M, Schreurs V, Sweers K, Van Eyck D, Hanssens L, Sinko S, Wampers M, Scheen A, Peuskens J, van Winkel R. Typical and atypical antipsychotics differentially affect long-term incidence rates of the metabolic syndrome in first-episode patients with schizophrenia: a retrospective chart review. Schizophr Res2008; 101(1-3): 295-303
CrossRef Pubmed Google scholar
[17]
Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol2008; 21(1): 70-83
CrossRef Pubmed Google scholar
[18]
Cacabelos R, Hashimoto R, Takeda M. Pharmacogenomics of antipsychotics efficacy for schizophrenia. Psychiatry Clin Neurosci2011; 65(1): 3-19
CrossRef Pubmed Google scholar
[19]
Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmöller J. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry2004; 9(5): 442-473
CrossRef Pubmed Google scholar
[20]
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet2012; 27(1): 55-67
CrossRef Pubmed Google scholar
[21]
Yasui-Furukori N, Mihara K, Takahata T, Suzuki A, Nakagami T, De Vries R, Tateishi T, Kondo T, Kaneko S. Effects of various factors on steady-state plasma concentrations of risperidone and 9-hydroxyrisperidone: lack of impact of MDR-1 genotypes. Br J Clin Pharmacol2004; 57(5): 569-575
CrossRef Pubmed Google scholar
[22]
Gunes A, Spina E, Dahl ML, Scordo MG. ABCB1 polymorphisms influence steady-state plasma levels of 9-hydroxyrisperidone and risperidone active moiety. Ther Drug Monit2008; 30(5): 628-633
CrossRef Pubmed Google scholar
[23]
Roh HK, Kim CE, Chung WG, Park CS, Svensson JO, Bertilsson L. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol2001; 57(9): 671-675
CrossRef Pubmed Google scholar
[24]
Jovanović N, Božina N, Lovrić M, Medved V, Jakovljević M, Peleš AM. The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone. Eur J Clin Pharmacol2010; 66(11): 1109-1117
CrossRef Pubmed Google scholar
[25]
Scordo MG, Spina E, Facciolà G, Avenoso A, Johansson I, Dahl ML. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl)1999; 147(3): 300-305
CrossRef Pubmed Google scholar
[26]
Mihara K, Kondo T, Yasui-Furukori N, Suzuki A, Ishida M, Ono S, Kubota T, Iga T, Takarada Y, de Vries R, Kaneko S. Effects of various CYP2D6 genotypes on the steady-state plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, in Japanese patients with schizophrenia. Ther Drug Monit2003; 25(3): 287-293
CrossRef Pubmed Google scholar
[27]
Yasui-Furukori N, Mihara K, Kondo T, Kubota T, Iga T, Takarada Y, De Vries R, Kaneko S, Tateishi T. Effects of CYP2D6 genotypes on plasma concentrations of risperidone and enantiomers of 9-hydroxyrisperidone in Japanese patients with schizophrenia. J Clin Pharmacol2003; 43(2): 122-127
CrossRef Pubmed Google scholar
[28]
Wang L, Yu L, Zhang AP, Fang C, Du J, Gu NF, Qin SY, Feng GY, Li XW, Xing QH, He L. Serum prolactin levels, plasma risperidone levels, polymorphism of cytochrome P450 2D6 and clinical response in patients with schizophrenia. J Psychopharmacol2007; 21(8): 837-842
CrossRef Pubmed Google scholar
[29]
Du J, Xu Y, Duan S, Zhang A, Xuan J, Wang L, Yu L, Wang H, Li X, Feng G, He L, Xing Q. A case-control association study between the CYP3A4 and CYP3A5 genes and schizophrenia in the Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry2009; 33(7): 1200-1204
CrossRef Pubmed Google scholar
[30]
Mahatthanatrakul W, Nontaput T, Ridtitid W, Wongnawa M, Sunbhanich M. Rifampin, a cytochrome P450 3A inducer, decreases plasma concentrations of antipsychotic risperidone in healthy volunteers. J Clin Pharm Ther2007; 32(2): 161-167
CrossRef Pubmed Google scholar
[31]
Mahatthanatrakul W, Sriwiriyajan S, Ridtitid W, Boonleang J, Wongnawa M, Rujimamahasan N, Pipatrattanaseree W. Effect of cytochrome P450 3A4 inhibitor ketoconazole on risperidone pharmacokinetics in healthy volunteers. J Clin Pharm Ther2012; 37(2): 221-225
CrossRef Pubmed Google scholar
[32]
Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, Goldstein JA. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther2001; 299(3): 825-831
Pubmed
[33]
Du J, Zhang A, Wang L, Xuan J, Yu L, Che R, Li X, Gu N, Lin Z, Feng G, Xing Q, He L. Relationship between response to risperidone, plasma concentrations of risperidone and CYP3A4 polymorphisms in schizophrenia patients. J Psychopharmacol2010; 24(7): 1115-1120
CrossRef Pubmed Google scholar
[34]
Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL, Thelma BK. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr Res2005; 75(1): 21-26
CrossRef Pubmed Google scholar
[35]
Eiermann B, Engel G, Johansson I, Zanger UM, Bertilsson L. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol1997; 44(5): 439-446
CrossRef Pubmed Google scholar
[36]
Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ, Swanson SP, Hamman MA, Wrighton SA. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther1996; 276(2): 658-666
Pubmed
[37]
Bozikas VP, Papakosta M, Niopas I, Karavatos A, Mirtsou-Fidani V. Smoking impact on CYP1A2 activity in a group of patients with schizophrenia. Eur Neuropsychopharmacol2004; 14(1): 39-44
CrossRef Pubmed Google scholar
[38]
Pavanello S, Pulliero A, Lupi S, Gregorio P, Clonfero E. Influence of the genetic polymorphism in the 5′-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res2005; 587(1-2): 59-66
CrossRef Pubmed Google scholar
[39]
Murayama N, Soyama A, Saito Y, Nakajima Y, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kimura H, Goto Y, Saitoh O, Katoh M, Ohnuma T, Kawai M, Sugai K, Ohtsuki T, Suzuki C, Minami N, Ozawa S, Sawada J. Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther2004; 308(1): 300-306
CrossRef Pubmed Google scholar
[40]
Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C—>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol1999; 47(4): 445-449
CrossRef Pubmed Google scholar
[41]
Kootstra-Ros JE, Smallegoor W, van der Weide J. The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem2005; 42(Pt 3): 216-219
CrossRef Pubmed Google scholar
[42]
Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA2000; 97(7): 3473-3478
CrossRef Pubmed Google scholar
[43]
Kerb R, Hoffmeyer S, Brinkmann U. ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics2001; 2(1): 51-64
CrossRef Pubmed Google scholar
[44]
Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther2004; 75(1): 13-33
CrossRef Pubmed Google scholar
[45]
Xing Q, Gao R, Li H, Feng G, Xu M, Duan S, Meng J, Zhang A, Qin S, He L. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics2006; 7(7): 987-993
CrossRef Pubmed Google scholar
[46]
Alenius M, Wadelius M, Dahl ML, Hartvig P, Lindström L, Hammarlund-Udenaes M. Gene polymorphism influencing treatment response in psychotic patients in a naturalistic setting. J Psychiatr Res2008; 42(11): 884-893
CrossRef Pubmed Google scholar
[47]
Consoli G, Lastella M, Ciapparelli A, Catena Dell’Osso M, Ciofi L, Guidotti E, Danesi R, Dell’Osso L, Del Tacca M, Di Paolo A. ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients. Pharmacogenomics2009; 10(8): 1267-1276
CrossRef Pubmed Google scholar
[48]
Skogh E, Sjödin I, Josefsson M, Dahl ML. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J Clin Psychopharmacol2011; 31(1): 4-9
CrossRef Pubmed Google scholar
[49]
Kuzman MR, Medved V, Bozina N, Grubišin J, Jovanovic N, Sertic J. Association study of MDR1 and 5-HT2C genetic polymorphisms and antipsychotic-induced metabolic disturbances in female patients with schizophrenia. Pharmacogenomics J2011; 11(1): 35-44
CrossRef Pubmed Google scholar
[50]
Xiang Q, Zhao X, Zhou Y, Duan JL, Cui YM. Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J Clin Pharmacol2010; 50(6): 659-666
CrossRef Pubmed Google scholar
[51]
Ghotbi R, Mannheimer B, Aklillu E, Suda A, Bertilsson L, Eliasson E, Osby U. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure—an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol2010; 66(5): 465-474
CrossRef Pubmed Google scholar
[52]
Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee MLT, Xiao T, Papp A, Wang DX, Sadée W. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA2007; 104(51): 20552-20557
CrossRef Pubmed Google scholar
[53]
Ikeda M, Yamanouchi Y, Kinoshita Y, Kitajima T, Yoshimura R, Hashimoto S, O’Donovan MC, Nakamura J, Ozaki N, Iwata N. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics2008; 9(10): 1437-1443
CrossRef Pubmed Google scholar
[54]
Zahari Z, Teh LK, Ismail R, Razali SM. Influence of DRD2 polymorphisms on the clinical outcomes of patients with schizophrenia. Psychiatr Genet2011; 21(4): 183-189
CrossRef Pubmed Google scholar
[55]
Xing Q, Qian X, Li H, Wong S, Wu S, Feng G, Duan S, Xu M, Gao R, Qin W, Gao J, Meng J, He L. The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. Int J Neuropsychopharmacol2007; 10(5): 631-637
CrossRef Pubmed Google scholar
[56]
Lundstrom K, Turpin MP. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun1996; 225(3): 1068-1072
CrossRef Pubmed Google scholar
[57]
Lane HY, Hsu SK, Liu YC, Chang YC, Huang CH, Chang WH. Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol2005; 25(1): 6-11
CrossRef Pubmed Google scholar
[58]
Xuan JK, Zhao XZ, He G, Yu L, Wang L, Tang W, Li XW, Gu NF, Feng GY, Xing QH, He L. Effects of the dopamine D3 receptor (DRD3) gene polymorphisms on risperidone response: a pharmacogenetic study. Neuropsychopharmacology2008; 33(2): 305-311
CrossRef Pubmed Google scholar
[59]
Travis MJ, Busatto GF, Pilowsky LS, Mulligan R, Acton PD, Gacinovic S, Mertens J, Terrière D, Costa DC, Ell PJ, Kerwin RW. 5-HT2A receptor blockade in patients with schizophrenia treated with risperidone or clozapine. A SPET study using the novel 5-HT2A ligand 123I-5-I-R-91150. Br J Psychiatry1998; 173(3): 236-241
CrossRef Pubmed Google scholar
[60]
Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ. The-1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry2004; 56(6): 406-410
CrossRef Pubmed Google scholar
[61]
Myers RL, Airey DC, Manier DH, Shelton RC, Sanders-Bush E. Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol Psychiatry2007; 61(2): 167-173
CrossRef Pubmed Google scholar
[62]
Benmessaoud D, Hamdani N, Boni C, Ramoz N, Hamon M, Kacha F, Gorwood P. Excess of transmission of the G allele of the‐1438A/G polymorphism of the 5‐HT(2A) receptor gene in patients with schizophrenia responsive to antipsychotics. BMC Psychiatry. 2008 May 30; 8:40
CrossRef Pubmed Google scholar
[63]
Gunes A, Melkersson KI, Scordo MG, Dahl ML. Association between HTR2C and HTR2A polymorphisms and metabolic abnormalities in patients treated with olanzapine or clozapine. J Clin Psychopharmacol2009; 29(1): 65-68
CrossRef Pubmed Google scholar
[64]
Popp J, Leucht S, Heres S, Steimer W. DRD4 48 bp VNTR but not 5-HT 2C Cys23Ser receptor polymorphism is related to antipsychotic-induced weight gain. Pharmacogenomics J2009; 9(1): 71-77
CrossRef Pubmed Google scholar
[65]
Hill MJ, Reynolds GP. Functional consequences of two HTR2C polymorphisms associated with antipsychotic-induced weight gain. Pharmacogenomics2011; 12(5): 727-734
CrossRef Pubmed Google scholar
[66]
Davies MA, Setola V, Strachan RT, Sheffler DJ, Salay E, Hufeisen SJ, Roth BL. Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenomics J2006; 6(1): 42-51
CrossRef Pubmed Google scholar
[67]
Wang L, Fang C, Zhang A, Du J, Yu L, Ma J, Feng G, Xing Q, He L. The -1019 C/G polymorphism of the 5-HT(1)A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol2008; 22(8): 904-909
CrossRef Pubmed Google scholar
[68]
Gu B, Wang L, Zhang AP, Ma G, Zhao XZ, Li HF, Feng GY, He L, Xing QH. Association between a polymorphism of the HTR3A gene and therapeutic response to risperidone treatment in drug-naive Chinese schizophrenia patients. Pharmacogenet Genomics2008; 18(8): 721-727
CrossRef Pubmed Google scholar
[69]
Wei Z, Wang L, Xuan J, Che R, Du J, Qin S, Xing Y, Gu B, Yang L, Li H, Li J, Feng G, He L, Xing Q. Association analysis of serotonin receptor 7 gene (HTR7) and risperidone response in Chinese schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry2009; 33(3): 547-551
CrossRef Pubmed Google scholar
[70]
Houston JP, Kohler J, Bishop JR, Ellingrod VL, Ostbye KM, Zhao F, Conley RR, Poole Hoffmann V, Fijal BA. Pharmacogenomic associations with weight gain in olanzapine treatment of patients without schizophrenia. J Clin Psychiatry2012; 73(8): 1077-1086
CrossRef Pubmed Google scholar
[71]
Kuzman MR, Medved V, Bozina N, Grubišin J, Jovanovic N, Sertic J. Association study of MDR1 and 5-HT2C genetic polymorphisms and antipsychotic-induced metabolic disturbances in female patients with schizophrenia. Pharmacogenomics J2011; 11(1): 35-44
CrossRef Pubmed Google scholar
[72]
Zai CC, Hwang RW, De Luca V, Müller DJ, King N, Zai GC, Remington G, Meltzer HY, Lieberman JA, Potkin SG, Kennedy JL. Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int J Neuropsychopharmacol2007; 10(5): 639-651
CrossRef Pubmed Google scholar
[73]
McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI, Lieberman JA, Sullivan PF, van den Oord EJ. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry2011; 16(1): 76-85
CrossRef Pubmed Google scholar
[74]
Adkins DE, Aberg K, McClay JL, Bukszár J, Zhao Z, Jia P, Stroup TS, Perkins D, McEvoy JP, Lieberman JA, Sullivan PF, van den Oord EJ. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry2011; 16(3): 321-332
CrossRef Pubmed Google scholar
[75]
Ingelman-Sundberg M, Gomez A. The past, present and future of pharmacoepigenomics. Pharmacogenomics2010; 11(5): 625-627
CrossRef Pubmed Google scholar
[76]
Baker EK, Johnstone RW, Zalcberg JR, El-Osta A. Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene2005; 24(54): 8061-8075
CrossRef Pubmed Google scholar
[77]
Hammons GJ, Yan-Sanders Y, Jin B, Blann E, Kadlubar FF, Lyn-Cook BD. Specific site methylation in the 5′-flanking region of CYP1A2 interindividual differences in human livers. Life Sci2001; 69(7): 839-845
CrossRef Pubmed Google scholar
[78]
Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res2006; 66(18): 9090-9098
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 Program, 2012AA02A515), the National Basic Research Program of China (973 Program, 2010CB529600), the National Key Technology R&D Program (2012BAI01B09), the National Natural Science Foundation of China (Grant Nos. 30900799, 30972823, and 81121001), the Shanghai Jiao Tong University Med-X Fund (YG2010MS61), Public Science and Technology Research Funds(201210056), the Shanghai Jiao Tong University Interdisciplinary Research Fund, the Major Program of Shanghai Committee of Science and Technology (11dz1950300) and the Shanghai Municipal Commission of Science and Technology Program (09DJ1400601), the Shanghai Leading Academic Discipline Project (B205).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(175 KB)

Accesses

Citations

Detail

Sections
Recommended

/