Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

Huating Li, Jing Zhang, Weiping Jia

PDF(131 KB)
PDF(131 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (1) : 25-30. DOI: 10.1007/s11684-013-0244-8
REVIEW
REVIEW

Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

Author information +
History +

Abstract

Fibroblast growth factor 21 (FGF21) is a member of the fibroblast growth factor family. It actually functions as endocrine hormones but does not regulate cell growth and differentiation. It is demonstrated that FGF21 acts on multiple tissue to coordinate carbohydrate and lipid metabolism, including enhancing insulin sensitivity, decreasing triglyceride concentrations, causing weight loss, ameliorating obesity-associated hyperglycemia and hyperlipidemia. Moreover, FGF21 also plays important roles in some physiological processes, such as fasting and feeding, growth hormone axis and thermogenic function of brown adipose tissue. Clinical relevance of FGF21 in humans is still unclear, and the basis and consequences of increased FGF21 in metabolic disease remain to be determined. Both the pharmacological actions and physiological roles make FGF21 attractive drug candidates for treating metabolic disease, but some questions remain to be answered. This article concentrates on recent advances in our understanding of FGF21.

Keywords

FGF21 / metabolism / pharmacology / physiology / clinical relevance

Cite this article

Download citation ▾
Huating Li, Jing Zhang, Weiping Jia. Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med, 2013, 7(1): 25‒30 https://doi.org/10.1007/s11684-013-0244-8

References

[1]
Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta2000; 1492(1): 203-206
CrossRef Pubmed Google scholar
[2]
Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev2005; 16(2): 159-178
CrossRef Pubmed Google scholar
[3]
Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet2004; 20(11): 563-569
CrossRef Pubmed Google scholar
[4]
Econs MJ, Strom TM, White KE, Evans WE, O’Riordan JLH, Speer MC, Lorenz-Depiereux B, Grabowski M, Meitinger T, 0. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet2000; 26(3): 345-348
CrossRef Pubmed Google scholar
[5]
Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA2001; 98(11): 6500-6505
CrossRef Pubmed Google scholar
[6]
Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun2000; 277(2): 494-498
CrossRef Pubmed Google scholar
[7]
Nishimura T, Utsunomiya Y, Hoshikawa M, Ohuchi H, Itoh N. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim Biophys Acta1999; 1444(1): 148-151
CrossRef Pubmed Google scholar
[8]
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab2005; 2(4): 217-225
CrossRef Pubmed Google scholar
[9]
Lundåsen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med2006; 260(6): 530-536
CrossRef Pubmed Google scholar
[10]
Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism—unique biological characteristics of FGF23. Bone2007; 40(5): 1190-1195
CrossRef Pubmed Google scholar
[11]
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest2005; 115(6): 1627-1635
CrossRef Pubmed Google scholar
[12]
Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs2008; 22(1): 37-44
CrossRef Pubmed Google scholar
[13]
Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem2006; 281(10): 6120-6123
CrossRef Pubmed Google scholar
[14]
Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature2006; 444(7120): 770-774
CrossRef Pubmed Google scholar
[15]
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem2007; 282(37): 26687-26695
CrossRef Pubmed Google scholar
[16]
Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M, Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA2007; 104(18): 7432-7437
CrossRef Pubmed Google scholar
[17]
Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt AB. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol2008; 215(1): 1-7
CrossRef Pubmed Google scholar
[18]
Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, Kliewer SA. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab2012; 16(3): 387-393
CrossRef Pubmed Google scholar
[19]
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology2008; 149(12): 6018-6027
CrossRef Pubmed Google scholar
[20]
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Véniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes2009; 58(1): 250-259
CrossRef Pubmed Google scholar
[21]
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology2007; 148(2): 774-781
CrossRef Pubmed Google scholar
[22]
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes2006; 55(9): 2470-2478
CrossRef Pubmed Google scholar
[23]
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology2009; 150(9): 4084-4093
CrossRef Pubmed Google scholar
[24]
Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, Mangelsdorf DJ, Kliewer SA, Wan Y. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci USA2012; 109(8): 3143-3148
CrossRef Pubmed Google scholar
[25]
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab2007; 5(6): 426-437
CrossRef Pubmed Google scholar
[26]
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab2007; 5(6): 415-425
CrossRef Pubmed Google scholar
[27]
Lundåsen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun2007; 360(2): 437-440
CrossRef Pubmed Google scholar
[28]
Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab2010; 11(3): 206-212
CrossRef Pubmed Google scholar
[29]
Reitman ML. FGF21: a missing link in the biology of fasting. Cell Metab2007; 5(6): 405-407
CrossRef Pubmed Google scholar
[30]
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell2012; 148(3): 556-567
CrossRef Pubmed Google scholar
[31]
Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev1994; 15(1): 80-101
Pubmed
[32]
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab2008; 8(1): 77-83
CrossRef Pubmed Google scholar
[33]
Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem2011; 286(40): 34559-34566
CrossRef Pubmed Google scholar
[34]
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med2011; 17(7-8): 736-740PMID:21373720
CrossRef Google scholar
[35]
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem2011; 286(15): 12983-12990
CrossRef Pubmed Google scholar
[36]
Klingenspor M. Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol2003; 88(1): 141-148
CrossRef Pubmed Google scholar
[37]
Scarpace PJ, Tse C, Matheny M. Thermoregulation with age: restoration of beta(3)-adrenergic responsiveness in brown adipose tissue by cold exposure. Proc Soc Exp Biol Med1996; 211(4): 374-380
Pubmed
[38]
Takahashi A, Shimazu T, Maruyama Y. Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue. Jpn J Physiol1992; 42(4): 653-664
CrossRef Pubmed Google scholar
[39]
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev2012; 26(3): 271-281
CrossRef Pubmed Google scholar
[40]
Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B, Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab2008; 8(2): 169-174
CrossRef Pubmed Google scholar
[41]
Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab2009; 94(9): 3594-3601
CrossRef Pubmed Google scholar
[42]
Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology2010; 139(2): 456-463
CrossRef Pubmed Google scholar
[43]
Dostálová I, Kaválková P, Haluzíková D, Lacinová Z, Mráz M, Papezová H, Haluzík M. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab2008; 93(9): 3627-3632
CrossRef Pubmed Google scholar
[44]
Fazeli PK, Misra M, Goldstein M, Miller KK, Klibanski A. Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. J Clin Endocrinol Metab2010; 95(1): 369-374
CrossRef Pubmed Google scholar
[45]
Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, Tang Y, Liu H, Boden G. Circulating FGF-21 levels in normal subjects and in newly diagnose patients with Type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes2008; 116(1): 65-68
CrossRef Pubmed Google scholar
[46]
Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care2009; 32(8): 1542-1546
CrossRef Pubmed Google scholar
[47]
Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, Matoulek M, Dostalova I, Humenanska V, Haluzik M. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol (Oxf)2009; 71(3): 369-375
CrossRef Pubmed Google scholar
[48]
Cuevas-Ramos D, Almeda-Valdes P, Gómez-Pérez FJ, Meza-Arana CE, Cruz-Bautista I, Arellano-Campos O, Navarrete-López M, Aguilar-Salinas CA. Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur J Endocrinol2010; 163(3): 469-477
CrossRef Pubmed Google scholar
[49]
Li H, Bao Y, Xu A, Pan X, Lu J, Wu H, Lu H, Xiang K, Jia W. Serum fibroblast growth factor 21 is associated with adverse lipid profiles and gamma-glutamyltransferase but not insulin sensitivity in Chinese subjects. J Clin Endocrinol Metab2009; 94(6): 2151-2156
CrossRef Pubmed Google scholar
[50]
Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, Zhang H, Pan X, Bao Y, Xiang K, Xu A, Jia W. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol2010; 53(5): 934-940
CrossRef Pubmed Google scholar
[51]
Matuszek B, Lenart-Lipińska M, Duma D, Solski J, Nowakowski A. Evaluation of concentrations of FGF-21- a new adipocytokine in type 2 diabetes. Endokrynol Pol2010; 61(1): 50-54
Pubmed
[52]
Yilmaz Y, Eren F, Yonal O, Kurt R, Aktas B, Celikel CA, Ozdogan O, Imeryuz N, Kalayci C, Avsar E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest2010; 40(10): 887-892
CrossRef Pubmed Google scholar
[53]
Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes2008; 57(5): 1246-1253
CrossRef Pubmed Google scholar
[54]
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes2010; 59(11): 2781-2789
CrossRef Pubmed Google scholar
[55]
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM, Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology2012; 153(1): 69-80
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (also called 973 Program) (2011CB504001), General Program of National Natural Science Foundation (Grant No. 81170379) and Key Project from Science and Technology Commission of Shanghai Municipality (09DZ1950202) to W.J., Young Scientists Fund of National Natural Science Foundation (Grant No.81200292) and Science and Technology Fund of Shanghai Jiao Tong University School of Medicine to H.L.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(131 KB)

Accesses

Citations

Detail

Sections
Recommended

/