Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis

Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng

PDF(116 KB)
PDF(116 KB)
Front. Med. ›› 2012, Vol. 6 ›› Issue (3) : 275-279. DOI: 10.1007/s11684-012-0216-4
REVIEW
REVIEW

Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis

Author information +
History +

Abstract

PTPN11, which encodes tyrosine phosphatase Shp2, is a critical gene mediating cellular responses to hormones and cytokines. Against original prediction as tumor suppressor for tyrosine phosphatases, PTPN11 was first identified as a proto-oncogene because activating mutations of this gene are associated with leukemogenesis. However, most recent experimental data suggest PTPN11/Shp2 acting as a tumor suppressor in hepatocarcinogenesis. This review focuses on the tumor-promoting or suppressing roles of the gene PTPN11/Shp2 in different cell types.

Keywords

PTPN11/Shp2 / leukemia / hepatocellular carcinoma / mutation

Cite this article

Download citation ▾
Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med, 2012, 6(3): 275‒279 https://doi.org/10.1007/s11684-012-0216-4

References

[1]
Freeman RM Jr, Plutzky J, Neel BG. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci U S A1992; 89(23): 11239–11243
CrossRef Pubmed Google scholar
[2]
Adachi M, Sekiya M, Miyachi T, Matsuno K, Hinoda Y, Imai K, Yachi A. Molecular cloning of a novel protein-tyrosine phosphatase SH-PTP3 with sequence similarity to the src-homology region 2. FEBS Lett1992; 314(3): 335–339
CrossRef Pubmed Google scholar
[3]
Feng GS, Hui CC, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science1993; 259(5101): 1607–1611
CrossRef Pubmed Google scholar
[4]
Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell1998; 92(4): 441–450
CrossRef Pubmed Google scholar
[5]
Eck MJ, Pluskey S, Trüb T, Harrison SC, Shoelson SE. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature1996; 379(6562): 277–280
CrossRef Pubmed Google scholar
[6]
Vogel W, Lammers R, Huang J, Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science1993; 259(5101): 1611–1614
CrossRef Pubmed Google scholar
[7]
Kazlauskas A, Feng GS, Pawson T, Valius M. The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc Natl Acad Sci U S A1993; 90(15): 6939–6943
CrossRef Pubmed Google scholar
[8]
Lechleider RJ, Freeman RM Jr, Neel BG. Tyrosyl phosphorylation and growth factor receptor association of the human corkscrew homologue, SH-PTP2. J Biol Chem1993; 268(18): 13434–13438
Pubmed
[9]
Kuhné MR, Pawson T, Lienhard GE, Feng GS. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem1993; 268(16): 11479–11481
Pubmed
[10]
Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol1996; 16(12): 6887–6899
Pubmed
[11]
Gu H, Pratt JC, Burakoff SJ, Neel BG. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell1998; 2(6): 729–740
CrossRef Pubmed Google scholar
[12]
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene2007; 26(22): 3291–3310
CrossRef Pubmed Google scholar
[13]
Milarski KL, Saltiel AR. Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem1994; 269(33): 21239–21243
Pubmed
[14]
Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol1994; 14(10): 6674–6682
Pubmed
[15]
Tang TL, Freeman RM Jr, O’Reilly AM, Neel BG, Sokol SY. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell1995; 80(3): 473–483
CrossRef Pubmed Google scholar
[16]
Qu CK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta2002; 1592(3): 297–301
CrossRef Pubmed Google scholar
[17]
Chan RJ, Feng GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood2007; 109(3): 862–867
CrossRef Pubmed Google scholar
[18]
Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell2011; 19(5): 629–639
CrossRef Pubmed Google scholar
[19]
Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol2012; 138(4): 637–646
CrossRef Pubmed Google scholar
[20]
Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet2001; 29(4): 465–468
CrossRef Pubmed Google scholar
[21]
Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A, Kucherlapati RS, Jeffery S, Patton MA, Gelb BD. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet2002; 70(6): 1555–1563
CrossRef Pubmed Google scholar
[22]
Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet2002; 39(8): 571–574
CrossRef Pubmed Google scholar
[23]
Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, Pizzuti A, Dallapiccola B. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet2002; 71(2): 389–394
CrossRef Pubmed Google scholar
[24]
Fragale A, Tartaglia M, Wu J, Gelb BD. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat2004; 23(3): 267–277
CrossRef Pubmed Google scholar
[25]
Keilhack H, David FS, McGregor M, Cantley LC, Neel BG. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem2005; 280(35): 30984–30993
CrossRef Pubmed Google scholar
[26]
Oishi K, Zhang H, Gault WJ, Wang CJ, Tan CC, Kim IK, Ying H, Rahman T, Pica N, Tartaglia M, Mlodzik M, Gelb BD. Phosphatase-defective LEOPARD syndrome mutations in PTPN11 gene have gain-of-function effects during Drosophila development. Hum Mol Genet2009; 18(1): 193–201
CrossRef Pubmed Google scholar
[27]
Jopling C, van Geemen D, den Hertog J. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects. PLoS Genet2007; 3(12): e225
CrossRef Pubmed Google scholar
[28]
Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, Yang W, Pao LI, Gilliland DG, Epstein JA, Neel BG. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med2004; 10(8): 849–857
CrossRef Pubmed Google scholar
[29]
Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest2011; 121(3): 1026–1043
CrossRef Pubmed Google scholar
[30]
Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J1997; 16(9): 2352–2364
CrossRef Pubmed Google scholar
[31]
Wu D, Pang Y, Ke Y, Yu J, He Z, Tautz L, Mustelin T, Ding S, Huang Z, Feng GS. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PLoS ONE2009; 4(3): e4914
CrossRef Pubmed Google scholar
[32]
Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, George EL, Neel BG. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell2006; 10(3): 317–327
CrossRef Pubmed Google scholar
[33]
Zhang X, Zhang Y, Tao B, Teng L, Li Y, Cao R, Gui Q, Ye M, Mou X, Cheng H, Hu H, Zhou R, Wu X, Xie Q, Ning W, Lai M, Shen H, Feng GS, Ke Y. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J2012; 26(6): 2338–2350
CrossRef Pubmed Google scholar
[34]
Zhang EE, Chapeau E, Hagihara K, Feng GS. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A2004; 101(45): 16064–16069
CrossRef Pubmed Google scholar
[35]
Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, Curran T, Ranscht B, Feng GS. Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol2007; 27(19): 6706–6717
CrossRef Pubmed Google scholar
[36]
Zhang SS, Hao E, Yu J, Liu W, Wang J, Levine F, Feng GS. Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A2009; 106(18): 7531–7536
CrossRef Pubmed Google scholar
[37]
He Z, Zhang SS, Meng Q, Li S, Zhu HH, Raquil MA, Alderson N, Zhang H, Wu J, Rui L, Cai D, Feng GS. Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals. Mol Cell Biol2012; 32(10): 1867–1878
CrossRef Pubmed Google scholar
[38]
Choong K, Freedman MH, Chitayat D, Kelly EN, Taylor G, Zipursky A. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol1999; 21(6): 523–527
CrossRef Pubmed Google scholar
[39]
Fukuda M, Horibe K, Miyajima Y, Matsumoto K, Nagashima M. Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J Pediatr Hematol Oncol1997; 19(2): 177–179
CrossRef Pubmed Google scholar
[40]
Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hählen K, Hasle H, Licht JD, Gelb BD. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet2003; 34(2): 148–150
CrossRef Pubmed Google scholar
[41]
Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, Palmi C, Carta C, Pession A, Aricò M, Masera G, Basso G, Sorcini M, Gelb BD, Biondi A. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood2004; 104(2): 307–313
CrossRef Pubmed Google scholar
[42]
Xu R, Yu Y, Zheng S, Zhao X, Dong Q, He Z, Liang Y, Lu Q, Fang Y, Gan X, Xu X, Zhang S, Dong Q, Zhang X, Feng GS. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood2005; 106(9): 3142–3149
CrossRef Pubmed Google scholar
[43]
Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood2004; 103(6): 2325–2331
CrossRef Pubmed Google scholar
[44]
Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell2005; 7(2): 179–191
CrossRef Pubmed Google scholar
[45]
Xu D, Liu X, Yu WM, Meyerson HJ, Guo C, Gerson SL, Qu CK. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. J Exp Med2011; 208(10): 1977–1988
CrossRef Pubmed Google scholar
[46]
Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang W, Mohi MG, Neel BG. Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood2009; 113(18): 4414–4424
CrossRef Pubmed Google scholar
[47]
Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science1995; 269(5229): 1427–1429
CrossRef Pubmed Google scholar
[48]
Xu D, Wang S, Yu WM, Chan G, Araki T, Bunting KD, Neel BG, Qu CK. A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood2010; 116(18): 3611–3621
CrossRef Pubmed Google scholar
[49]
Qu CK, Yu WM, Azzarelli B, Cooper S, Broxmeyer HE, Feng GS. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol1998; 18(10): 6075–6082
Pubmed
[50]
Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W, Zhang DE, Li L, Feng GS. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood2011; 117(20): 5350–5361
CrossRef Pubmed Google scholar
[51]
Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, Gu S, Hong WX, Liu AX, Wang X, Barbara M, Sharma T, Gavin J, Kutok JL, Iscove NN, Shannon KM, Dick JE, Neel BG, Braun BS. Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood2011; 117(16): 4253–4261
CrossRef Pubmed Google scholar
[52]
Bard-Chapeau EA, Yuan J, Droin N, Long S, Zhang EE, Nguyen TV, Feng GS. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol Cell Biol2006; 26(12): 4664–4674
CrossRef Pubmed Google scholar
[53]
Peters M, Blinn G, Jostock T, Schirmacher P, Meyer zum Büschenfelde KH, Galle PR, Rose-John S. Combined interleukin 6 and soluble interleukin 6 receptor accelerates murine liver regeneration. Gastroenterology2000; 119(6): 1663–1671
CrossRef Pubmed Google scholar
[54]
Streetz KL, Luedde T, Manns MP, Trautwein C. Interleukin 6 and liver regeneration. Gut2000; 47(2): 309–312
CrossRef Pubmed Google scholar
[55]
Feng GS. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell2012; 21(2): 150–154
CrossRef Pubmed Google scholar
[56]
Aleksic K, Lackner C, Geigl JB, Schwarz M, Auer M, Ulz P, Fischer M, Trajanoski Z, Otte M, Speicher MR. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology2011; 53(3): 895–904
CrossRef Pubmed Google scholar

Acknowledgements

The authors apologize for omitting citation of many other important reports in this short review article. The work in Feng laboratory has been funded by NIH grants R01DK075916 and R01HL096125. The work in Wang laboratory has been supported by Chinese National Key Project (2012ZX10002-009, 011,013), National Natural Science Foundation of China (Grant Nos. 30921006, 30900770), Key Basic Science Foundation of Shanghai (10JC1418500), Project of the State Key Laboratory of Shanghai Jiaotong University (91-10-02).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(116 KB)

Accesses

Citations

Detail

Sections
Recommended

/