Mechanisms and impacts of chromosomal translocations in cancers

Jing H. Wang

Front. Med. ›› 2012, Vol. 6 ›› Issue (3) : 263 -274.

PDF (276KB)
Front. Med. ›› 2012, Vol. 6 ›› Issue (3) : 263 -274. DOI: 10.1007/s11684-012-0215-5
REVIEW
REVIEW

Mechanisms and impacts of chromosomal translocations in cancers

Author information +
History +
PDF (276KB)

Abstract

Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades, tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations. This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.

Keywords

DNA double strand breaks / chromosomal translocations / genomic instability / spatial proximity / carcinogenesis

Cite this article

Download citation ▾
Jing H. Wang. Mechanisms and impacts of chromosomal translocations in cancers. Front. Med., 2012, 6(3): 263-274 DOI:10.1007/s11684-012-0215-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BalmainA. Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer2001; 1(1): 77–82

[2]

RowleyJD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer2001; 1(3): 245–250

[3]

LevanA. Some current problems of cancer cytogenetics. Hereditas1967; 57(3): 343–355

[4]

MitelmanF, JohanssonB, MertensF. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer2007; 7(4): 233–245

[5]

StrattonMR. Exploring the genomes of cancer cells: progress and promise. Science2011; 331(6024): 1553–1558

[6]

StrattonMR, CampbellPJ, FutrealPA. The cancer genome. Nature2009; 458(7239): 719–724

[7]

NegriniS, GorgoulisVG, HalazonetisTD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol2010; 11(3): 220–228

[8]

PleasanceED, CheethamRK, StephensPJ, McBrideDJ, HumphraySJ, GreenmanCD, VarelaI, LinML, OrdóñezGR, BignellGR, YeK, AlipazJ, BauerMJ, BeareD, ButlerA, CarterRJ, ChenL, CoxAJ, EdkinsS, Kokko-GonzalesPI, GormleyNA, GrocockRJ, HaudenschildCD, HimsMM, JamesT, JiaM, KingsburyZ, LeroyC, MarshallJ, MenziesA, MudieLJ, NingZ, RoyceT, Schulz-TrieglaffOB, SpiridouA, StebbingsLA, SzajkowskiL, TeagueJ, WilliamsonD, ChinL, RossMT, CampbellPJ, BentleyDR, FutrealPA, StrattonMR. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature2010; 463(7278): 191–196

[9]

PleasanceED, StephensPJ, O’MearaS, McBrideDJ, MeynertA, JonesD, LinML, BeareD, LauKW, GreenmanC, VarelaI, Nik-ZainalS, DaviesHR, OrdoñezGR, MudieLJ, LatimerC, EdkinsS, StebbingsL, ChenL, JiaM, LeroyC, MarshallJ, MenziesA, ButlerA, TeagueJW, MangionJ, SunYA, McLaughlinSF, PeckhamHE, TsungEF, CostaGL, LeeCC, MinnaJD, GazdarA, BirneyE, RhodesMD, McKernanKJ, StrattonMR, FutrealPA, CampbellPJ. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature2010; 463(7278): 184–190

[10]

StephensPJ, McBrideDJ, LinML, VarelaI, PleasanceED, SimpsonJT, StebbingsLA, LeroyC, EdkinsS, MudieLJ, GreenmanCD, JiaM, LatimerC, TeagueJW, LauKW, BurtonJ, QuailMA, SwerdlowH, ChurcherC, NatrajanR, SieuwertsAM, MartensJW, SilverDP, LangerødA, RussnesHE, FoekensJA, Reis-FilhoJS, van’t VeerL, RichardsonAL, Børresen-DaleAL, CampbellPJ, FutrealPA, StrattonMR. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature2009; 462(7276): 1005–1010

[11]

NowellPC, HungerfordDA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst1960; 25: 85–109

[12]

NowellPC, RowleyJD, KnudsonAG Jr. Cancer genetics, cytogenetics—defining the enemy within. Nat Med1998; 4(10): 1107–1111

[13]

RowleyJD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature1973; 243(5405): 290–293

[14]

RowleyJD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet1973; 16(2): 109–112

[15]

MorrisDS, TomlinsSA, MontieJE, ChinnaiyanAM. The discovery and application of gene fusions in prostate cancer. BJU Int2008; 102(3): 276–282

[16]

ManoH. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci2008; 99(12): 2349–2355

[17]

SodaM, ChoiYL, EnomotoM, TakadaS, YamashitaY, IshikawaS, FujiwaraS, WatanabeH, KurashinaK, HatanakaH, BandoM, OhnoS, IshikawaY, AburataniH, NikiT, SoharaY, SugiyamaY, ManoH. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature2007; 448(7153): 561–566

[18]

GroffenJ, StephensonJR, HeisterkampN, de KleinA, BartramCR, GrosveldG. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell1984; 36(1): 93–99

[19]

KurzrockR, KantarjianHM, DrukerBJ, TalpazM. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med2003; 138(10): 819–830

[20]

ShtivelmanE, LifshitzB, GaleRP, CanaaniE. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature1985; 315(6020): 550–554

[21]

ForoniL, GerrardG, NnaE, KhorashadJS, StevensD, SwaleB, MilojkovicD, ReidA, GoldmanJ, MarinD. Technical aspects and clinical applications of measuring BCR-ABL1 transcripts number in chronic myeloid leukemia. Am J Hematol2009; 84(8): 517–522

[22]

SzczylikC, SkorskiT, NicolaidesNC, ManzellaL, MalaguarneraL, VenturelliD, GewirtzAM, CalabrettaB. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science1991; 253(5019): 562–565

[23]

Van EttenRA, JacksonP, BaltimoreD. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell1989; 58(4): 669–678

[24]

KonopkaJB, WatanabeSM, WitteON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell1984; 37(3): 1035–1042

[25]

BariláD, Superti-FurgaG. An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet1998; 18(3): 280–282

[26]

FranzWM, BergerP, WangJY. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J1989; 8(1): 137–147

[27]

JacksonP, BaltimoreD. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J1989; 8(2): 449–456

[28]

MayerBJ, BaltimoreD. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Biol1994; 14(5): 2883–2894

[29]

PendergastAM, MullerAJ, HavlikMH, ClarkR, McCormickF, WitteON. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA1991; 88(13): 5927–5931

[30]

DeiningerM, BuchdungerE, DrukerBJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood2005; 105(7): 2640–2653

[31]

BergerR, ChenSJ, ChenZ. Philadelphia-positive acute leukemia.Cytogenetic and molecular aspects. Cancer Genet Cytogenet1990; 44(2): 143–152

[32]

DrukerBJ, SawyersCL, KantarjianH, RestaDJ, ReeseSF, FordJM, CapdevilleR, TalpazM. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med2001; 344(14): 1038–1042

[33]

Dalla-FaveraR, BregniM, EriksonJ, PattersonD, GalloRC, CroceCM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA1982; 79(24): 7824–7827

[34]

ZechL, HaglundU, NilssonK, KleinG. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer1976; 17(1): 47–56

[35]

TaubR, KirschI, MortonC, LenoirG, SwanD, TronickS, AaronsonS, LederP. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA1982; 79(24): 7837–7841

[36]

KüppersR, Dalla-FaveraR. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene2001; 20(40): 5580–5594

[37]

ar-RushdiA, NishikuraK, EriksonJ, WattR, RoveraG, CroceCM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science1983; 222(4622): 390–393

[38]

KanungoA, MedeirosLJ, AbruzzoLV, LinP. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol2006; 19(1): 25–33

[39]

AdamsJM, HarrisAW, PinkertCA, CorcoranLM, AlexanderWS, CoryS, PalmiterRD, BrinsterRL. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature1985; 318(6046): 533–538

[40]

JanzS. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst)2006; 5(9–10): 1213–1224

[41]

WangJH, AltFW, GostissaM, DattaA, MurphyM, AlimzhanovMB, CoakleyKM, RajewskyK, ManisJP, YanCT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med2008; 205(13): 3079–3090

[42]

BoxerLM, DangCV. Translocations involving c-myc and c-myc function. Oncogene2001; 20(40): 5595–5610

[43]

TruffinetV, PinaudE, CognéN, PetitB, GuglielmiL, CognéM, DenizotY. The 3′ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J Immunol2007; 179(9): 6033–6042

[44]

WangJ, BoxerLM. Regulatory elements in the immunoglobulin heavy chain gene 3′-enhancers induce c-myc deregulation and lymphomagenesis in murine B cells. J Biol Chem2005; 280(13): 12766–12773

[45]

YanY, ParkSS, JanzS, EckhardtLA. In a model of immunoglobulin heavy-chain (IGH)/MYC translocation, the Igh 3′ regulatory region induces MYC expression at the immature stage of B cell development. Genes Chromosomes Cancer2007; 46(10): 950–959

[46]

GostissaM, YanCT, BiancoJM, CognéM, PinaudE, AltFW. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3′ regulatory region. Nature2009; 462(7274): 803–807

[47]

MiyoshiH, ShimizuK, KozuT, MasekiN, KanekoY, OhkiM. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA1991; 88(23): 10431–10434

[48]

TsujimotoY, FingerLR, YunisJ, NowellPC, CroceCM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science1984; 226(4678): 1097–1099

[49]

VauxDL, CoryS, AdamsJM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature1988; 335(6189): 440–442

[50]

GostissaM, AltFW, ChiarleR. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol2011; 29(1): 319–350

[51]

ZhangY, GostissaM, HildebrandDG, BeckerMS, BoboilaC, ChiarleR, LewisS, AltFW. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol2010; 106: 93–133

[52]

LieberMR, YuK, RaghavanSC. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst)2006; 5(9–10): 1234–1245

[53]

MarculescuR, VanuraK, MontpellierB, RoullandS, LeT, NavarroJM, JägerU, McBlaneF, NadelB. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair (Amst)2006; 5(9–10): 1246–1258

[54]

TsaiAG, LieberMR. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics2010; 11(Suppl 1): S1

[55]

SchatzDG, SwansonPC. V(D)J recombination: mechanisms of initiation. Annu Rev Genet2011; 45(1): 167–202

[56]

GormanJR, AltFW. Regulation of immunoglobulin light chain isotype expression. Adv Immunol1998; 69: 113–181

[57]

JungD, GiallourakisC, MostoslavskyR, AltFW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol2006; 24(1): 541–570

[58]

BassingCH, SwatW, AltFW. The mechanism and regulation of chromosomal V(D)J recombination. Cell2002; 109(2 Suppl): S45–S55

[59]

ChaudhuriJ, BasuU, ZarrinA, YanC, FrancoS, PerlotT, VuongB, WangJ, PhanRT, DattaA, ManisJ, AltFW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol2007; 94: 157–214

[60]

GaoY, SunY, FrankKM, DikkesP, FujiwaraY, SeidlKJ, SekiguchiJM, RathbunGA, SwatW, WangJ, BronsonRT, MalynnBA, BryansM, ZhuC, ChaudhuriJ, DavidsonL, FerriniR, StamatoT, OrkinSH, GreenbergME, AltFW. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell1998; 95(7): 891–902

[61]

YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature2007; 449(7161): 478–482

[62]

LieberMR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem2010; 79(1): 181–211

[63]

NambiarM, RaghavanSC. How does DNA break during chromosomal translocations? Nucleic Acids Res2011; 39(14): 5813–5825

[64]

LewisSM, AgardE, SuhS, CzyzykL. Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol1997; 17(6): 3125–3136

[65]

MarculescuR, LeT, SimonP, JaegerU, NadelBV. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med2002; 195(1): 85–98

[66]

RaghavanSC, KirschIR, LieberMR. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem2001; 276(31): 29126–29133

[67]

NambiarM, GoldsmithG, MoorthyBT, LieberMR, JoshiMV, ChoudharyB, HosurRV, RaghavanSC. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res2011; 39(3): 936–948

[68]

RaghavanSC, SwansonPC, WuX, HsiehCL, LieberMR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature2004; 428(6978): 88–93

[69]

KüppersR. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer2005; 5(4): 251–262

[70]

TsaiAG, LuH, RaghavanSC, MuschenM, HsiehCL, LieberMR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell2008; 135(6): 1130–1142

[71]

GazumyanA, BothmerA, KleinIA, NussenzweigMC, McBrideKM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res2012; 113: 167–190

[72]

KovalchukAL, duBoisW, MushinskiE, McNeilNE, HirtC, QiCF, LiZ, JanzS, HonjoT, MuramatsuM, RiedT, BehrensT, PotterM. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. J Exp Med2007; 204(12): 2989–3001

[73]

RamiroAR, JankovicM, EisenreichT, DifilippantonioS, Chen-KiangS, MuramatsuM, HonjoT, NussenzweigA, NussenzweigMC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell2004; 118(4): 431–438

[74]

RobbianiDF, BothmerA, CallenE, Reina-San-MartinB, DorsettY, DifilippantonioS, BollandDJ, ChenHT, CorcoranAE, NussenzweigA, NussenzweigMC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell2008; 135(6): 1028–1038

[75]

JägerU, BöcskörS, LeT, MitterbauerG, BolzI, ChottA, KnebaM, MannhalterC, NadelB. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood2000; 95(11): 3520–3529

[76]

WangJH, GostissaM, YanCT, GoffP, HickernellT, HansenE, DifilippantonioS, WesemannDR, ZarrinAA, RajewskyK, NussenzweigA, AltFW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature2009; 460(7252): 231–236

[77]

BassingCH, AltFW. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst)2004; 3(8–9): 781–796

[78]

SavageJR. Reflections and meditations upon complex chromosomal exchanges. Mutat Res2002; 512(2–3): 93–109

[79]

RichardsonC, JasinM. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature2000; 405(6787): 697–700

[80]

BellaicheY, MogilaV, PerrimonN. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics1999; 152(3): 1037–1044

[81]

JasinM. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet1996; 12(6): 224–228

[82]

ZarrinAA, Del VecchioC, TsengE, GleasonM, ZarinP, TianM, AltFW. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science2007; 315(5810): 377–381

[83]

ChiarleR, ZhangY, FrockRL, LewisSM, MolinieB, HoYJ, MyersDR, ChoiVW, CompagnoM, MalkinDJ, NeubergD, MontiS, GiallourakisCC, GostissaM, AltFW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell2011; 147(1): 107–119

[84]

KleinIA, ReschW, JankovicM, OliveiraT, YamaneA, NakahashiH, Di VirgilioM, BothmerA, NussenzweigA, RobbianiDF, CasellasR, NussenzweigMC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell2011; 147(1): 95–106

[85]

LinC, YangL, TanasaB, HuttK, JuBG, OhgiK, ZhangJ, RoseDW, FuXD, GlassCK, RosenfeldMG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell2009; 139(6): 1069–1083

[86]

MahowaldGK, BaronJM, MahowaldMA, KulkarniS, BredemeyerAL, BassingCH, SleckmanBP. Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci USA2009; 106(43): 18339–18344

[87]

WeinstockDM, BrunetE, JasinM. Induction of chromosomal translocations in mouse and human cells using site-specific endonucleases. J Natl Cancer Inst Monogr2008; 39: 20–24

[88]

StoddardBL. Homing endonuclease structure and function. Q Rev Biophys2005; 38(1): 49–95

[89]

SavageJR. Proximity matters. Science2000; 290(5489): 62–63

[90]

SavageJR. A brief survey of aberration origin theories. Mutat Res1998; 404(1–2): 139–147

[91]

CremerT, CremerC. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet2001; 2(4): 292–301

[92]

CremerT, CremerM. Chromosome territories. Cold Spring Harb Perspect Biol2010; 2(3): a003889

[93]

GilbertN, BoyleS, FieglerH, WoodfineK, CarterNP, BickmoreWA. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell2004; 118(5): 555–566

[94]

Lieberman-AidenE, van BerkumNL, WilliamsL, ImakaevM, RagoczyT, TellingA, AmitI, LajoieBR, SaboPJ, DorschnerMO, SandstromR, BernsteinB, BenderMA, GroudineM, GnirkeA, StamatoyannopoulosJ, MirnyLA, LanderES, DekkerJ. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science2009; 326(5950): 289–293

[95]

AtenJA, StapJ, KrawczykPM, van OvenCH, HoebeRA, EssersJ, KanaarR. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science2004; 303(5654): 92–95

[96]

DionV, KalckV, HorigomeC, TowbinBD, GasserSM. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol2012; 14(5): 502–509

[97]

Miné-HattabJ, RothsteinR. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol2012; 14(5): 510–517

[98]

MarshallWF, StraightA, MarkoJF, SwedlowJ, DernburgA, BelmontA, MurrayAW, AgardDA, SedatJW. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol1997; 7(12): 930–939

[99]

SoutoglouE, DornJF, SenguptaK, JasinM, NussenzweigA, RiedT, DanuserG, MisteliT. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol2007; 9(6): 675–682

[100]

MeaburnKJ, MisteliT, SoutoglouE. Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol2007; 17(1): 80–90

[101]

NevesH, RamosC, da SilvaMG, ParreiraA, ParreiraL. The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood1999; 93(4): 1197–1207

[102]

OsborneCS, ChakalovaL, MitchellJA, HortonA, WoodAL, BollandDJ, CorcoranAE, FraserP. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol2007; 5(8): e192

[103]

RoixJJ, McQueenPG, MunsonPJ, ParadaLA, MisteliT. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet2003; 34(3): 287–291

[104]

ManiRS, TomlinsSA, CallahanK, GhoshA, NyatiMK, VaramballyS, PalanisamyN, ChinnaiyanAM. Induced chromosomal proximity and gene fusions in prostate cancer. Science2009; 326(5957): 1230

[105]

MathasS, KreherS, MeaburnKJ, JöhrensK, LamprechtB, AssafC, SterryW, KadinME, DaibataM, JoosS, HummelM, SteinH, JanzM, AnagnostopoulosI, SchrockE, MisteliT, DörkenB. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA2009; 106(14): 5831–5836

[106]

ZhangY, McCordRP, HoYJ, LajoieBR, HildebrandDG, SimonAC, BeckerMS, AltFW, DekkerJ. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell2012; 148(5): 908–921

[107]

HakimO, ReschW, YamaneA, KleinI, Kieffer-KwonKR, JankovicM, OliveiraT, BothmerA, VossTC, Ansarah-SobrinhoC, MatheE, LiangG, CobellJ, NakahashiH, RobbianiDF, NussenzweigA, HagerGL, NussenzweigMC, CasellasR. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature2012; 484(7392): 69–74

[108]

LiuP, ErezA, NagamaniSC, DharSU, KołodziejskaKE, DharmadhikariAV, CooperML, WiszniewskaJ, ZhangF, WithersMA, BacinoCA, Campos-AcevedoLD, DelgadoMR, FreedenbergD, GarnicaA, GrebeTA, Hernández-AlmaguerD, ImmkenL, LalaniSR, McLeanSD, NorthrupH, ScagliaF, StrathearnL, TrapaneP, KangSH, PatelA, CheungSW, HastingsPJ, StankiewiczP, LupskiJR, BiW. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell2011; 146(6): 889–903

[109]

RauschT, JonesDT, ZapatkaM, StützAM, ZichnerT, WeischenfeldtJ, JägerN, RemkeM, ShihD, NorthcottPA, PfaffE, TicaJ, WangQ, MassimiL, WittH, BenderS, PleierS, CinH, HawkinsC, BeckC, von DeimlingA, HansV, BrorsB, EilsR, ScheurlenW, BlakeJ, BenesV, KulozikAE, WittO, MartinD, ZhangC, PoratR, MerinoDM, WassermanJ, JabadoN, FontebassoA, BullingerL, RückerFG, DöhnerK, DöhnerH, KosterJ, MolenaarJJ, VersteegR, KoolM, TaboriU, MalkinD, KorshunovA, TaylorMD, LichterP, PfisterSM, KorbelJO. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell2012; 148(1–2): 59–71

[110]

StephensPJ, GreenmanCD, FuB, YangF, BignellGR, MudieLJ, PleasanceED, LauKW, BeareD, StebbingsLA, McLarenS, LinML, McBrideDJ, VarelaI, Nik-ZainalS, LeroyC, JiaM, MenziesA, ButlerAP, TeagueJW, QuailMA, BurtonJ, SwerdlowH, CarterNP, MorsbergerLA, Iacobuzio-DonahueC, FollowsGA, GreenAR, FlanaganAM, StrattonMR, FutrealPA, CampbellPJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell2011; 144(1): 27–40

[111]

KearneyL, HorsleySW. Molecular cytogenetics in haematological malignancy: current technology and future prospects. Chromosoma2005; 114(4): 286–294

[112]

SpeicherMR, CarterNP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet2005; 6(10): 782–792

[113]

ShuenA, FoulkesWD. Clinical implications of next-generation sequencing for cancer medicine. Curr Oncol2010; 17(5): 39–42

[114]

ChenZ, ChenSJ, TongJH, ZhuYJ, HuangME, WangWC, WuY, SunGL, WangZY, LarsenCJ, BergerR . The retinoic acid alpha receptor gene is frequently disrupted in its 5′ part in Chinese patients with acute promyelocytic leukemia. Leukemia1991; 5(4): 288–292

[115]

ChenZX, XueYQ, ZhangR, TaoRF, XiaXM, LiC, WangW, ZuWY, YaoXZ, LingBJ. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood1991; 78(6): 1413–1419

[116]

HuangME, YeYC, ChenSR, ChaiJR, LuJX, ZhoaL, GuLJ, WangZY. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood1988; 72(2): 567–572

[117]

MorrisSW, KirsteinMN, ValentineMB, DittmerKG, ShapiroDN, SaltmanDL, LookAT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science1994; 263(5151): 1281–1284

[118]

ShiotaM, FujimotoJ, SembaT, SatohH, YamamotoT, MoriS. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene1994; 9(6): 1567–1574

[119]

ChenY, TakitaJ, ChoiYL, KatoM, OhiraM, SanadaM, WangL, SodaM, KikuchiA, IgarashiT, NakagawaraA, HayashiY, ManoH, OgawaS. Oncogenic mutations of ALK kinase in neuroblastoma. Nature2008; 455(7215): 971–974

[120]

KwakEL, BangYJ, CamidgeDR, ShawAT, SolomonB, MakiRG, OuSH, DezubeBJ, JännePA, CostaDB, Varella-GarciaM, KimWH, LynchTJ, FidiasP, StubbsH, EngelmanJA, SequistLV, TanW, GandhiL, Mino-KenudsonM, WeiGC, ShreeveSM, RatainMJ, SettlemanJ, ChristensenJG, HaberDA, WilnerK, SalgiaR, ShapiroGI, ClarkJW, IafrateAJ. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med2010; 363(18): 1693–1703

[121]

SolomonB, Varella-GarciaM, CamidgeDR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol2009; 4(12): 1450–1454

[122]

TakeuchiK, ChoiYL, TogashiY, SodaM, HatanoS, InamuraK, TakadaS, UenoT, YamashitaY, SatohY, OkumuraS, NakagawaK, IshikawaY, ManoH. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res2009; 15(9): 3143–3149

[123]

RabkinCS, JanzS. Mechanisms and consequences of chromosomal translocation. Cancer Epidemiol Biomarkers Prev2008; 17(8): 1849–1851

[124]

WiemelsJ. Chromosomal translocations in childhood leukemia: natural history, mechanisms, and epidemiology. J Natl Cancer Inst Monogr2008; 39: 87–90

[125]

MagrathI. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol2012; 156(6): 744–756

[126]

GreavesMF, WiemelsJ. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer2003; 3(9): 639–649

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (276KB)

2141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/