Nucleic acid-based diagnostics for infectious diseases in public health affairs
Albert Cheung-Hoi Yu, Greg Vatcher, Xin Yue, Yan Dong, Mao Hua Li, Patrick H. K. Tam, Parker Y.L. Tsang, April K.Y. Wong, Michael H.K. Hui, Bin Yang, Hao Tang, Lok-Ting Lau
Nucleic acid-based diagnostics for infectious diseases in public health affairs
Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.
nucleic acid-based diagnostics / infectious disease / PCR / NASBA / LAMP / microarray / LOAC / public health affairs
[1] |
Apostolopoulos Y, Sonmez S. Population mobility and infectious disease. New York, NY: Springer, 2007
|
[2] |
Zetterström R. The Nobel Prize in 2005 for the discovery of Helicobacter pylori: implications for child health. Acta Paediatr 2006; 95(1): 3-5
CrossRef
Pubmed
Google scholar
|
[3] |
Vomelová I, Vanícková Z, Sedo A. Methods of RNA purification. All ways (should) lead to Rome. Folia Biol (Praha) 2009; 55(6): 243-251
Pubmed
|
[4] |
Demeke T, Jenkins GR. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 2010; 396(6): 1977-1990
CrossRef
Pubmed
Google scholar
|
[5] |
Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2009; 29(4): 673-693
CrossRef
Pubmed
Google scholar
|
[6] |
Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230(4732): 1350-1354
CrossRef
Pubmed
Google scholar
|
[7] |
Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 1976; 127(3): 1550-1557
Pubmed
|
[8] |
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239(4839): 487-491
CrossRef
Pubmed
Google scholar
|
[9] |
Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. Biotechniques 1999; 26(1): 112-122, 124-125
Pubmed
|
[10] |
Yu AC. The difficulties of testing for SARS. Science 2004; 303(5657): 469-471
CrossRef
Pubmed
Google scholar
|
[11] |
Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ, Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102(7): 2430-2435
CrossRef
Pubmed
Google scholar
|
[12] |
Yu AC, Lau LT, Fung YW. Boosting the sensitivity of real-time polymerase-chain-reaction testing for SARS. N Engl J Med 2004; 350(15): 1577-1579
CrossRef
Pubmed
Google scholar
|
[13] |
Lau LT, Fung YW, Wong FP, Lin SS, Wang CR, Li HL, Dillon N, Collins RA, Tam JS, Chan PK, Wang CG, Yu AC. A real-time PCR for SARS-coronavirus incorporating target gene pre-amplification. Biochem Biophys Res Commun 2003; 312(4): 1290-1296
CrossRef
Pubmed
Google scholar
|
[14] |
Lau LT, Banks J, Aherne R, Brown IH, Dillon N, Collins RA, Chan KY, Fung YW, Xing J, Yu AC. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem Biophys Res Commun 2004; 313(2): 336-342
CrossRef
Pubmed
Google scholar
|
[15] |
Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-738
CrossRef
Pubmed
Google scholar
|
[16] |
Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252(5013): 1711-1714
CrossRef
Pubmed
Google scholar
|
[17] |
Gill P. DNA as evidence—the technology of identification. N Engl J Med 2005; 352(26): 2669-2671
CrossRef
Pubmed
Google scholar
|
[18] |
Alcamo IE. DNA analysis and diagnosis. In: DNA Technology: the Awesome Skill. New York: Academic Press, 2001
|
[19] |
.Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza,Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A, Lim M, Shindo N, Penn C, Nicholson KG. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010; 362(18): 1708-1719lt;OrgAddress>20445182</OrgAddress>
CrossRef
Google scholar
|
[20] |
Oner AF, Bay A, Arslan S, Akdeniz H, Sahin HA, Cesur Y, Epcacan S, Yilmaz N, Deger I, Kizilyildiz B, Karsen H, Ceyhan M. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N Engl J Med 2006; 355(21): 2179-2185
CrossRef
Pubmed
Google scholar
|
[21] |
Boppana SB, Ross SA, Shimamura M, Palmer AL, Ahmed A, Michaels MG, Sánchez PJ, Bernstein DI, Tolan RW Jr, Novak Z, Chowdhury N, Britt WJ, Fowler KB; National Institute on Deafness and Other Communication Disorders CHIMES Study. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med 2011; 364(22): 2111-2118
CrossRef
Pubmed
Google scholar
|
[22] |
McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2011; 364(4): 340-350
CrossRef
Pubmed
Google scholar
|
[23] |
Baltzell K, Buehring GC, Krishnamurthy S, Kuerer H, Shen HM, Sison JD. Limited evidence of human papillomavirus on breast tissue using molecular in situ methods. Cancer 2011; 118(5): 1212-1220
CrossRef
Pubmed
Google scholar
|
[24] |
Yamamoto Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin Diagn Lab Immunol 2002; 9(3): 508-514
Pubmed
|
[25] |
Labarre P, Gerlach J, Wilmoth J, Beddoe A, Singleton J, Weigl B.Non-instrumented nucleic acid amplification (NINA): instrument-free molecular malaria diagnostics for low-resource settings. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 1097-1099
CrossRef
Pubmed
Google scholar
|
[26] |
Compton J. Nucleic acid sequence-based amplification. Nature 1991; 350(6313): 91-92
CrossRef
Pubmed
Google scholar
|
[27] |
Romano JW, van Gemen B, Kievits T. NASBA: a novel, isothermal detection technology for qualitative and quantitative HIV-1 RNA measurements. Clin Lab Med 1996; 16(1): 89-103
Pubmed
|
[28] |
Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep 2004; 5(8): 795-800
CrossRef
Pubmed
Google scholar
|
[29] |
Liu D, Daubendiek SL, Zillman MA, Ryan K, Kool ET. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 1996; 118(7): 1587-1594
CrossRef
Pubmed
Google scholar
|
[30] |
Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 1992; 20(7): 1691-1696
CrossRef
Pubmed
Google scholar
|
[31] |
Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 1992; 89(1): 392-396
CrossRef
Pubmed
Google scholar
|
[32] |
Lau LT, Fung YW, Yu AC. Detection of animal viruses using nucleic acid sequence-based amplification (NASBA). Dev Biol (Basel) 2006; 126: 7-15
Pubmed
|
[33] |
Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; 28(3): 495-503
Pubmed
|
[34] |
Collins RA, Ko LS, So KL, Ellis T, Lau LT, Yu AC. A NASBA method to detect high- and low-pathogenicity H5 avian influenza viruses. Avian Dis 2003; 47(3 Suppl): 1069-1074
CrossRef
Pubmed
Google scholar
|
[35] |
Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu AC, Lipkin WI. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet 2007; 370(9593): 1137-1145
CrossRef
Pubmed
Google scholar
|
[36] |
Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 1998; 26(9): 2150-2155
CrossRef
Pubmed
Google scholar
|
[37] |
Loens K, Ieven M, Ursi D, De Laat C, Sillekens P, Oudshoorn P, Goossens H. Improved detection of rhinoviruses by nucleic acid sequence-based amplification after nucleotide sequence determination of the 5′ noncoding regions of additional rhinovirus strains. J Clin Microbiol 2003; 41(5): 1971-1976
CrossRef
Pubmed
Google scholar
|
[38] |
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28(12): E63
CrossRef
Pubmed
Google scholar
|
[39] |
Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 2002; 16(3): 223-229
CrossRef
Pubmed
Google scholar
|
[40] |
Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 2008; 3(5): 877-882
CrossRef
Pubmed
Google scholar
|
[41] |
Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 2004; 59(2): 145-157
CrossRef
Pubmed
Google scholar
|
[42] |
Karlsen F, Steen HB, Nesland JM. SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction. J Virol Methods 1995; 55(1): 153-156
CrossRef
Pubmed
Google scholar
|
[43] |
Mori Y, Hirano T, Notomi T. Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol 2006; 6(1): 3
CrossRef
Pubmed
Google scholar
|
[44] |
Romano JW, Shurtliff RN, Dobratz E, Gibson A, Hickman K, Markham PD, Pal R. Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J Virol Methods 2000; 86(1): 61-70
CrossRef
Pubmed
Google scholar
|
[45] |
Lau LT, Reid SM, King DP, Lau AM, Shaw AE, Ferris NP, Yu AC. Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Vet Microbiol 2008; 126(1-3): 101-110
CrossRef
Pubmed
Google scholar
|
[46] |
Collins RA, Ko LS, So KL, Ellis T, Lau LT, Yu AC. Detection of highly pathogenic and low pathogenic avian influenza subtype H5 (Eurasian lineage) using NASBA. J Virol Methods 2002; 103(2): 213-225
CrossRef
Pubmed
Google scholar
|
[47] |
Romano JW, Shurtliff RN, Grace M, Lee EM, Ginocchio C, Kaplan M, Pal R. Macrophage-derived chemokine gene expression in human and macaque cells: mRNA quantification using NASBA technology. Cytokine 2001; 13(6): 325-333
CrossRef
Pubmed
Google scholar
|
[48] |
Simpkins SA, Chan AB, Hays J, Pöpping B, Cook N. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol 2000; 30(1): 75-79
CrossRef
Pubmed
Google scholar
|
[49] |
Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 2009; 15(2): 62-69
CrossRef
Pubmed
Google scholar
|
[50] |
Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett 2005; 253(1): 155-161
CrossRef
Pubmed
Google scholar
|
[51] |
Hill J, Beriwal S, Chandra I, Paul VK, Kapil A, Singh T, Wadowsky RM, Singh V, Goyal A, Jahnukainen T, Johnson JR, Tarr PI, Vats A. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol 2008; 46(8): 2800-2804
CrossRef
Pubmed
Google scholar
|
[52] |
Iturriza-Gómara M, Xerry J, Gallimore CI, Dockery C, Gray J. Evaluation of the Loopamp (loop-mediated isothermal amplification) kit for detecting Norovirus RNA in faecal samples. J Clin Virol 2008; 42(4): 389-393
CrossRef
Pubmed
Google scholar
|
[53] |
Poon LL, Leung CS, Tashiro M, Chan KH, Wong BW, Yuen KY, Guan Y, Peiris JS. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem 2004; 50(6): 1050-1052
CrossRef
Pubmed
Google scholar
|
[54] |
Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Tashiro M, Odagiri T. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine 2006; 24(44-46): 6679-6682
CrossRef
Pubmed
Google scholar
|
[55] |
Geojith G, Dhanasekaran S, Chandran SP, Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods 2011; 84(1): 71-73
CrossRef
Pubmed
Google scholar
|
[56] |
Ito M, Watanabe M, Nakagawa N, Ihara T, Okuno Y. Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods 2006; 135(2): 272-275
CrossRef
Pubmed
Google scholar
|
[57] |
Shan S, Ko LS, Collins RA, Wu Z, Chen J, Chan KY, Xing J, Lau LT, Yu AC. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Biochem Biophys Res Commun 2003; 302(2): 377-383
CrossRef
Pubmed
Google scholar
|
[58] |
Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 2007; 70(3): 499-501
CrossRef
Pubmed
Google scholar
|
[59] |
Lau LT, Feng XY, Lam TY, Hui HK, Yu AC. Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses. J Virol Methods 2010; 168(1-2): 251-254
CrossRef
Pubmed
Google scholar
|
[60] |
Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, Ieven M. Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia. J Microbiol Methods 2008; 73(3): 257-262
CrossRef
Pubmed
Google scholar
|
[61] |
Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, Ieven M. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J Clin Microbiol 2008; 46(1): 185-191
CrossRef
Pubmed
Google scholar
|
[62] |
Mader A, Riehle U, Brandstetter T, Stickeler E, zur Hausen A, Rühe J. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Anal Bioanal Chem 2010; 397(8): 3533-3541
CrossRef
Pubmed
Google scholar
|
[63] |
Iseki H, Alhassan A, Ohta N, Thekisoe OM, Yokoyama N, Inoue N, Nambota A, Yasuda J, Igarashi I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 2007; 71(3): 281-287
CrossRef
Pubmed
Google scholar
|
[64] |
Lam L, Sakakihara S, Ishizuka K, Takeuchi S, Arata HF, Fujita H, Noji H. Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomed Microdevices 2008; 10(4): 539-546
CrossRef
Pubmed
Google scholar
|
[65] |
Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 2011; 29(5): 240-250
CrossRef
Pubmed
Google scholar
|
[66] |
Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98(3): 503-517
CrossRef
Pubmed
Google scholar
|
[67] |
Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 1992; 20(7): 1679-1684
CrossRef
Pubmed
Google scholar
|
[68] |
Kafatos FC, Jones CW, Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 1979; 7(6): 1541-1552
CrossRef
Pubmed
Google scholar
|
[69] |
Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989; 86(16): 6230-6234
CrossRef
Pubmed
Google scholar
|
[70] |
Bains W, Smith GC. A novel method for nucleic acid sequence determination. J Theor Biol 1988; 135(3): 303-307
CrossRef
Pubmed
Google scholar
|
[71] |
Yamada M, Kato K, Shindo K, Nomizu M, Sakairi N, Yamamoto H, Nishi N. Immobilization of DNA by UV irradiation and its utilization as functional materials. Nucleic Acids Symp Ser 1999; 42(1): 103-104
Pubmed
|
[72] |
Müller UR, Nicolau DV. Microarray technology and its applications. Berlin: Springer, 2005: xxii-379
|
[73] |
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467-470
CrossRef
Pubmed
Google scholar
|
[74] |
Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V. pH-dependent specific binding and combing of DNA. Biophys J 1997; 73(4): 2064-2070
CrossRef
Pubmed
Google scholar
|
[75] |
Henke L, Piunno PAE, McClure AC, Krull UJ. Covalent immobilization of single-stranded DNA onto optical fibers using various linkers. Anal Chim Acta 1997; 344(3): 201-213
CrossRef
Google scholar
|
[76] |
Henke L, Krull UJ. Immobilization technologies used for nucleic acid biosensors: a review. Can J Anal Sci Spectros 1999; 44(2): 61-70
|
[77] |
Piunno PAE, Hanafi-Bagby D, Henke L, Krull Ulrich J. A critical review of nucleic acid biosensor and chip-based oligonucleotide array technologies. In: Chemical and Biological Sensors for Environmental Monitoring. American Chemical Society, 2000: 257-291
|
[78] |
Palchetti I, Mascini M, Wittmann C. Electrochemical adsorption technique for immobilization of single-stranded oligonucleotides onto carbon screen-printed electrodes immobilisation of DNA on chips II. Vol. 261. Berlin / Heidelberg: Springer, 2005: 27-43
|
[79] |
Algar WR, Lim Y, Massey M, Wong AKY, Ye Y, Krull UJ. Assembly of oligonucleotide probes on surfaces for development of biosensors and biochips. In: Soft Nanomaterials. American Scientific Publishers, 2009: 1-66
|
[80] |
Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem 2003; 75(11): 2663-2669
CrossRef
Pubmed
Google scholar
|
[81] |
Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983; 105(13): 4481-4483
CrossRef
Google scholar
|
[82] |
Wink T, van Zuilen SJ, Bult A, van Bennkom WP. Self-assembled monolayers for biosensors. Analyst (Lond) 1997; 122(4): 43R-50R
CrossRef
Pubmed
Google scholar
|
[83] |
Ruediger D, Daniel H, Rajendra R, Alistair R. The role of substrates in microarray experimentation and how to choose the correct coating for microarraying. In: Microarray Innovations. CRC Press, 2009: 53-69
|
[84] |
Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 2000; 18(4): 438-441
CrossRef
Pubmed
Google scholar
|
[85] |
de Gans BJ, Schubert US. Inkjet printing of well-defined polymer dots and arrays. Langmuir 2004; 20(18): 7789-7793
CrossRef
Pubmed
Google scholar
|
[86] |
Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991; 251(4995): 767-773
CrossRef
Pubmed
Google scholar
|
[87] |
Fodor SPA. DNA Sequencing: massively parallel genomics. Science 1997; 277(5324): 393-395
CrossRef
Google scholar
|
[88] |
May GS. Fundamentals of semiconductor fabrication. New York, Chichester: Wiley, 2003: 320
|
[89] |
Ahrendt SA, Halachmi S, Chow JT, Wu L, Halachmi N, Yang SC, Wehage S, Jen J, Sidransky D. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci USA 1999; 96(13): 7382-7387
CrossRef
Pubmed
Google scholar
|
[90] |
Shen Y, Miller DT, Cheung SW, Lip V, Sheng X, Tomaszewicz K, Shao H, Fang H, Tang HS, Irons M, Walsh CA, Platt O, Gusella JF, Wu BL. Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin Chem 2007; 53(12): 2051-2059
CrossRef
Pubmed
Google scholar
|
[91] |
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365(9460): 671-679
Pubmed
|
[92] |
Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci USA 2002; 99(24): 15687-15692
CrossRef
Pubmed
Google scholar
|
[93] |
Chiu CY, Rouskin S, Koshy A, Urisman A, Fischer K, Yagi S, Schnurr D, Eckburg PB, Tompkins LS, Blackburn BG, Merker JD, Patterson BK, Ganem D, DeRisi JL. Microarray detection of human parainfluenza virus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis 2006; 43(8): e71-e76
CrossRef
Pubmed
Google scholar
|
[94] |
Chen EC, Miller SA, DeRisi JL, Chiu CY. Using a pan-viral microarray assay (Virochip) to screen clinical samples for viral pathogens. J Vis Exp 2011; 50: 2536
CrossRef
Pubmed
Google scholar
|
[95] |
Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 2002; 16(2): 119-127
CrossRef
Pubmed
Google scholar
|
[96] |
Schick B, Wemmert S, Willnecker V, Dlugaiczyk J, Nicolai P, Siwiec H, Thiel CT, Rauch A, Wendler O. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol 2011; 39(5): 1143-1151
Pubmed
|
[97] |
Tuefferd M, de Bondt A, Van den Wyngaert I, Talloen W, Göhlmann H. Microarray profiling of DNA extracted from FFPE tissues using SNP 6.0 Affymetrix platform. Methods Mol Biol 2011; 724: 147-160
CrossRef
Pubmed
Google scholar
|
[98] |
Herring CD, Palsson BO. An evaluation of Comparative Genome Sequencing (CGS) by comparing two previously-sequenced bacterial genomes. BMC Genomics 2007; 8(1): 274
CrossRef
Pubmed
Google scholar
|
[99] |
Chui JV, Weisfeld-Adams JD, Tepperberg J, Mehta L. Clinical and molecular characterization of chromosome 7p22.1 microduplication detected by array CGH. Am J Med Genet A 2011; 155A(10): 2508-2511
CrossRef
Pubmed
Google scholar
|
[100] |
Panzeri E, Conconi D, Antolini L, Redaelli S, Valsecchi MG, Bovo G, Pallotti F, Viganò P, Strada G, Dalprà L, Bentivegna A. Chromosomal aberrations in bladder cancer: fresh versus formalin fixed paraffin embedded tissue and targeted FISH versus wide microarray-based CGH analysis. PLoS ONE 2011; 6(9): e24237
CrossRef
Pubmed
Google scholar
|
[101] |
Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Research 2011; 39(22): 9536-9548
CrossRef
Pubmed
Google scholar
|
[102] |
Schwartzman J, Mongoue-Tchokote S, Gibbs A, Gao L, Corless CL, Jin J, Zarour L, Higano C, True LD, Vessella RL, Wilmot B, Bottomly D, McWeeney SK, Bova GS, Partin AW, Mori M, Alumkal J. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics 2011; 6(10): 1248-1256
CrossRef
Pubmed
Google scholar
|
[103] |
Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90(11): 2535-2547
CrossRef
Pubmed
Google scholar
|
[104] |
Takahashi H, Tainaka H, Umezawa M, Takeda K, Tanaka H, Nishimune Y, Oshio S. Evaluation of testicular toxicology of doxorubicin based on microarray analysis of testicular specific gene expression. J Toxicol Sci 2011; 36(5): 559-567
CrossRef
Pubmed
Google scholar
|
[105] |
Fixe F, Cabeça R, Chu V, Prazeres DMF, Ferreira GNM, Conde JP. Electric-field-pulse-assisted covalent immobilization of DNA in the nanosecond time scale. Appl Phys Lett 2003; 83(7): 1465-1467
CrossRef
Google scholar
|
[106] |
Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res 1997; 25(24): 4907-4914
CrossRef
Pubmed
Google scholar
|
[107] |
Moreno-Hagelsieb L, Foultier B, Laurent G, Pampin R, Remacle J, Raskin JP, Flandre D. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 2007; 22(9-10): 2199-2207
CrossRef
Pubmed
Google scholar
|
[108] |
Fixe F, Chu V, Prazeres DM, Conde JP. An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays. Nucleic Acids Res 2004; 32(9): e70
CrossRef
Pubmed
Google scholar
|
[109] |
Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294-1301
CrossRef
Pubmed
Google scholar
|
[110] |
Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 2011; 11(9): 3974-3978
CrossRef
Pubmed
Google scholar
|
[111] |
Varadan VK, Jiang X, Varadan VV. Microstereomicrolithography and other fabrication techniques for 3D MEMS. Chichester: Wiley, 2001:xiii-260
|
[112] |
Ng JM, Gitlin I, Stroock AD, Whitesides GM. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002; 23(20): 3461-3473
CrossRef
Pubmed
Google scholar
|
[113] |
Lin MC, Chu CJ, Tsai LC, Lin HY, Wu CS, Wu YP, Wu YN, Shieh DB, Su YW, Chen CD. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett 2007; 7(12): 3656-3661
CrossRef
Google scholar
|
[114] |
Castillo-Salgado C. Trends and directions of global public health surveillance. Epidemiol Rev 2010; 32(1): 93-109
CrossRef
Pubmed
Google scholar
|
[115] |
Chan KH, Lai ST, Poon LL, Guan Y, Yuen KY, Peiris JS. Analytical sensitivity of rapid influenza antigen detection tests for swine-origin influenza virus (H1N1). J Clin Virol 2009; 45(3): 205-207
CrossRef
Pubmed
Google scholar
|
[116] |
Ngaosuwankul N, Noisumdaeng P, Komolsiri P, Pooruk P, Chokephaibulkit K, Chotpitayasunondh T, Sangsajja C, Chuchottaworn C, Farrar J, Puthavathana P. Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses. Virol J 2010; 7(1): 75
CrossRef
Pubmed
Google scholar
|
[117] |
Lee N, Chan PK, Hui DS, Rainer TH, Wong E, Choi KW, Lui GC, Wong BC, Wong RY, Lam WY, Chu IM, Lai RW, Cockram CS, Sung JJ. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis 2009; 200(4): 492-500
CrossRef
Pubmed
Google scholar
|
[118] |
Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Basel Switzerland) 2009; 9(4): 3122-3148
CrossRef
Google scholar
|
[119] |
Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res 2001; 29(24): 5163-5168
CrossRef
Pubmed
Google scholar
|
[120] |
Fuchs J, Fiche JB, Buhot A, Calemczuk R, Livache T. Salt concentration effects on equilibrium melting curves from DNA microarrays. Biophys J 2010; 99(6): 1886-1895
CrossRef
Pubmed
Google scholar
|
[121] |
Nakano S, Fujimoto M, Hara H, Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res 1999; 27(14): 2957-2965
CrossRef
Pubmed
Google scholar
|
[122] |
Halperin A, Buhot A, Zhulina EB. Hybridization at a surface: the role of spacers in DNA microarrays. Langmuir 2006; 22(26): 11290-11304
CrossRef
Pubmed
Google scholar
|
[123] |
Vanderhoeven J, Pappaert K, Dutta B, Van Hummelen P, Desmet G. DNA microarray enhancement using a continuously and discontinuously rotating microchamber. Anal Chem 2005; 77(14): 4474-4480
CrossRef
Pubmed
Google scholar
|
[124] |
Chen CC, Ku WC, Chiu SK, Tzeng CM. Deoxyribonucleic acid hybridization acceleration by photovoltaic effect. Appl Phys Lett 2006; 89(23): 233902
|
[125] |
Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci USA 1997; 94(4): 1119-1123
CrossRef
Pubmed
Google scholar
|
[126] |
Heller MJ, Forster AH, Tu E. Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 2000; 21(1): 157-164
CrossRef
Pubmed
Google scholar
|
[127] |
Fixe F, Chu V, Prazeres DM, Conde JP. Single base mismatch detection by microsecond voltage pulses. Biosens Bioelectron 2005; 21(6): 888-893
CrossRef
Pubmed
Google scholar
|
[128] |
Fixe F, Branz HM, Louro N, Chu V, Prazeres DM, Conde JP. Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips. Nanotechnology 2005; 16(10): 2061-2071
CrossRef
Pubmed
Google scholar
|
[129] |
Fixe F, Branz HM, Louro N, Chu V, Prazeres DM, Conde JP. Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays. Biosens Bioelectron 2004; 19(12): 1591-1597
CrossRef
Pubmed
Google scholar
|
[130] |
Erickson D, Liu X, Krull U, Li D. Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem 2004; 76(24): 7269-7277
CrossRef
Pubmed
Google scholar
|
[131] |
Swami N, Chou CF, Ramamurthy V, Chaurey V. Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip 2009; 9(22): 3212-3220
CrossRef
Pubmed
Google scholar
|
[132] |
Creager S, Yu CJ, Bamdad C, O’Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF. Electron transfer at electrodes through conjugated “molecular wire” bridges. J Am Chem Soc 1999; 121(5): 1059-1064
CrossRef
Google scholar
|
[133] |
Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc 1997; 119(14): 3401-3402
CrossRef
Google scholar
|
[134] |
Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000; 289(5485): 1757-1760
CrossRef
Pubmed
Google scholar
|
[135] |
Robelek R, Niu L, Schmid EL, Knoll W. Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Anal Chem 2004; 76(20): 6160-6165
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |