Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases

Chong Liu, Dingfeng Su

PDF(163 KB)
PDF(163 KB)
Front. Med. ›› 2012, Vol. 6 ›› Issue (1) : 35-40. DOI: 10.1007/s11684-012-0171-0
REVIEW
REVIEW

Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases

Author information +
History +

Abstract

Inflammation is important in the pathogenesis and development of cardiovascular diseases. Recent studies show that vagus nerve stimulation inhibits pro-inflammatory cytokine production through “the cholinergic anti-inflammatory pathway,” more specifically via the α7 nicotinic acetylcholine receptor (α7nAChR). In the current study, the role of the cholinergic anti-inflammatory pathway during septic shock, hypertension, and myocardial infarction is reviewed, and its possible clinical implications in cardiovascular diseases are discussed.

Keywords

α7 nicotinic acetylcholine receptor / cardiovascular diseases / baroreflex sensitivity

Cite this article

Download citation ▾
Chong Liu, Dingfeng Su. Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases. Front Med, 2012, 6(1): 35‒40 https://doi.org/10.1007/s11684-012-0171-0

References

[1]
Matsukawa A. STAT proteins in innate immunity during sepsis: lessons from gene knockout mice. Acta Med Okayama 2007; 61(5): 239-245
Pubmed
[2]
Gómez-Guerrero C, Mallavia B, Egido J. Targeting inflammation in cardiovascular diseases:still a neglected field? Cardiovasc Ther 2011<month>Apr</month><day>1</day>.[Epub ahead of print]
CrossRef Google scholar
[3]
Rogers LK, Velten M. Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 2011; 89(13-14): 417-421
CrossRef Pubmed Google scholar
[4]
Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 2007; 80(24-25): 2325-2329
CrossRef Pubmed Google scholar
[5]
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405(6785): 458-462
CrossRef Pubmed Google scholar
[6]
Trenchard D, Gardner D, Guz A. Role of pulmonary vagal afferent nerve fibres in the development of rapid shallow breathing in lung inflammation. Clin Sci 1972; 42(3): 251-263
CrossRef Google scholar
[7]
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003; 421(6921): 384-388
CrossRef Pubmed Google scholar
[8]
de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007; 151(7): 915-929
CrossRef Pubmed Google scholar
[9]
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9(5-8): 125-134
Pubmed
[10]
de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6(8): 844-851
CrossRef Pubmed Google scholar
[11]
Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 2009; 46(8-9): 1867-1877
CrossRef Pubmed Google scholar
[12]
Lee C, Lim HK, Sakong J, Lee YS, Kim JR, Baek SH. Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 2006; 69(3): 1041-1047
Pubmed
[13]
Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 2007; 74(2): 224-242
CrossRef Pubmed Google scholar
[14]
Lo M, Su DF, Julien C, Cerutti C, Vincent M, Sassard J. Influence of hypertension and age on the sympathetic and parasympathetic components of cardiac baroreflex in the conscious rat. Arch Mal Coeur Vaiss1988; 81(Spec No): 113-117(in French)
Pubmed
[15]
Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, Liu C, Xi T, Su DF, Shen FM. Dysfunction of cholinergic anti-inflammatory pathway in hypertensive rats. Hypertension 2011; 57(2): 298-307
CrossRef Pubmed Google scholar
[16]
Li DL, Liu BH, Sun L, Zhao M, He X, Yu XJ, Zang WJ. Alterations of muscarinic acetylcholine receptors-2, 4 and α7-nicotinic acetylcholine receptor expression after ischaemia/reperfusion in the rat isolated heart. Clin Exp Pharmacol Physiol 2010; 37(12): 1114-1119
CrossRef Pubmed Google scholar
[17]
Fu YJ, Shu H, Miao CY, Wang MW, Su DF. Restoration of baroreflex function by ketanserin is not blood pressure dependent in conscious freely moving rats. J Hypertens 2004; 22(6): 1165-1172
CrossRef Pubmed Google scholar
[18]
Ashida T, Ono C, Sugiyama T. Effects of short-term hypocaloric diet on sympatho-vagal interaction assessed by spectral analysis of heart rate and blood pressure variability during stress tests in obese hypertensive patients. Hypertens Res 2007; 30(12): 1199-1203
CrossRef Pubmed Google scholar
[19]
Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol 2007; 34(4): 377-384
CrossRef Pubmed Google scholar
[20]
Bernardi L, Porta C, Spicuzza L, Bellwon J, Spadacini G, Frey AW, Yeung LY, Sanderson JE, Pedretti R, Tramarin R. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 2002; 105(2): 143-145
CrossRef Pubmed Google scholar
[21]
Joshi N, Taylor J, Bisognano JD. Implantable device therapy for the treatment of resistant hypertension. J Cardiovasc Transl Res 2009; 2(2): 150-153
CrossRef Pubmed Google scholar
[22]
Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195(6): 781-788
CrossRef Pubmed Google scholar
[23]
Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 2000; 85(1-3): 141-147
CrossRef Pubmed Google scholar
[24]
Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M, Mautner S, Wente MN, Encke J, Werner J, Dalpke AH, Stremmel W, Nawroth PP, Martin E, Krammer PH, Bierhaus A, Weigand MA. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 2008; 36(2): 404-408
CrossRef Pubmed Google scholar
[25]
Peter C, Schmidt K, Hofer S, Stephan M, Martin E, Weigand MA, Walther A. Effects of physostigmine on microcirculatory alterations during experimental endotoxemia. Shock 2010; 33(4): 405-411
CrossRef Pubmed Google scholar
[26]
van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 2006; 4(9): 1997-2002
CrossRef Pubmed Google scholar
[27]
Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007; 35(12): 2762-2768
CrossRef Pubmed Google scholar
[28]
Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004; 10(11): 1216-1221
CrossRef Pubmed Google scholar
[29]
Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195(6): 781-788
CrossRef Pubmed Google scholar
[30]
Liu C, Shen FM, Le YY, Kong Y, Liu X, Cai GJ, Chen AF, Su DF. Antishock effect of anisodamine involves a novel pathway for activatingα7 nicotinic acetylcholine receptor. Crit Care Med 2009; 37(2): 634-641
CrossRef Pubmed Google scholar
[31]
Shen FM, Guan YF, Xie HH, Su DF. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock 2004; 21(6): 556-560
CrossRef Pubmed Google scholar
[32]
Shi KY, Shen FM, Liu AJ, Chu ZX, Cao YL, Su DF. The survival time post-cecal ligation and puncture in sinoaortic denervated rats. J Cardiovasc Pharmacol 2007; 50(2): 162-167
CrossRef Pubmed Google scholar
[33]
Liu C, Zhang GF, Song SW, Cai GJ, Liu WH, Miao CY, Su DF. Effects of ketanserin on endotoxic shock and baroreflex function in rodents. J Infect Dis 2011 ;204(10):1605-1612
Pubmed
[34]
Luft FC, Mervaala E, Müller DN, Gross V, Schmidt F, Park JK, Schmitz C, Lippoldt A, Breu V, Dechend R, Dragun D, Schneider W, Ganten D, Haller H. Hypertension-induced end-organ damage : a new transgenic approach to an old problem. Hypertension 1999; 33(1 Pt 2): 212-218
Pubmed
[35]
Bautista LE. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 2003; 17(4): 223-230
CrossRef Pubmed Google scholar
[36]
Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 2002; 36(6): 1231-1236
CrossRef Pubmed Google scholar
[37]
Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, Bitto A, Marini H, Zaffe D, Botticelli AR, Iannone A, Tomasi A, Bigiani A, Bertolini A, Squadrito F, Guarini S. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med 2005; 33(11): 2621-2628
CrossRef Pubmed Google scholar
[38]
Schwartz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death:new insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 1988; 78(4): 969-979
CrossRef Pubmed Google scholar
[39]
Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 1982; 66(4): 874-880
CrossRef Pubmed Google scholar
[40]
La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 1988; 78(4): 816-824
CrossRef Pubmed Google scholar
[41]
La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351(9101): 478-484
CrossRef Pubmed Google scholar
[42]
La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, Bigger JT Jr, Camm AJ, Schwartz PJ; the Autonomic Tone and Reflexes After Myocardial Infarction (ATRAMI) Investigators. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 2001; 103(16): 2072-2077
Pubmed
[43]
Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 1984; 69(6): 1182-1189
CrossRef Pubmed Google scholar
[44]
La Rovere MT, Bersano C, Gnemmi M, Specchia G, Schwartz PJ. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 2002; 106(8): 945-949
CrossRef Pubmed Google scholar
[45]
Jorge L, Rodrigues B, Rosa KT, Malfitano C, Loureiro TC, Medeiros A, Curi R, Brum PC, Lacchini S, Montano N, De Angelis K, Irigoyen MC. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J 2011; 32(7): 904-912
CrossRef Pubmed Google scholar
[46]
Gao L, Schultz HD, Patel KP, Zucker IH, Wang W. Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension 2005; 45(6): 1173-1181
CrossRef Pubmed Google scholar
[47]
Minisi AJ, Nashed TB, Quinn MS. Regional left ventricular deafferentation increases baroreflex sensitivity following myocardial infarction. Cardiovasc Res 2003; 58(1): 136-141
CrossRef Pubmed Google scholar
[48]
Zhang C, Chen H, Xie HH, Shu H, Yuan WJ, Su DF. Inflammation is involved in the organ damage induced by sinoaortic denervation in rats. J Hypertens 2003; 21(11): 2141-2148
CrossRef Pubmed Google scholar
[49]
Yu JG, Song SW, Shu H, Fan SJ, Liu AJ, Liu C, Guo W, Guo JM, Miao CY, Su DF. Baroreflex deficiency hampers angiogenesis after myocardial infarction via acetylcholine-α7-nicotinic ACh receptor in rats. Eur Heart J 2011<month>August</month><day>17</day>. [Epub ahead of print]
CrossRef Google scholar
[50]
Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004; 109(1): 120-124
CrossRef Pubmed Google scholar
[51]
Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 2008; 10(9): 884-891
CrossRef Pubmed Google scholar
[52]
Katare RG, Ando M, Kakinuma Y, Arikawa M, Yamasaki F, Sato T. Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. J Mol Cell Cardiol 2010; 49(2): 234-244
CrossRef Pubmed Google scholar
[53]
Kong SS, Liu JJ, Hwang TC, Yu XJ, Lu Y, Zang WJ. Tumour necrosis factor-α and its receptors in the beneficial effects of vagal stimulation after myocardial infarction in rats. Clin Exp Pharmacol Physiol 2011; 38(5): 300-306
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(163 KB)

Accesses

Citations

Detail

Sections
Recommended

/