Mesenchymal stem cells hold promise for regenerative medicine

Shihua Wang, Xuebin Qu, Robert Chunhua Zhao

PDF(210 KB)
PDF(210 KB)
Front. Med. ›› 2011, Vol. 5 ›› Issue (4) : 372-378. DOI: 10.1007/s11684-011-0164-4
REVIEW

Mesenchymal stem cells hold promise for regenerative medicine

Author information +
History +

Abstract

Regenerative medicine is an emerging interdisciplinary field of research that uses several technological approaches including stem cells to repair tissues. Mesenchymal stem cells (MSCs), a type of adult stem cell, have generated a great amount of interest over the past decade in this field. Numerous studies have explored the role of MSCs in tissue repair and modulation of allogeneic immune responses. The mechanisms through which MSCs exert their therapeutic potential rely on some key properties of the cells as follows: the capacity to differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial, and neuronal cells; the ability to secrete multiple bioactive molecules capable of stimulating the recovery of injured cells and inhibiting inflammation; the lack of immunogenicity; and the ability to perform immunomodulatory functions. In the present review, we focus on these three aspects upon which the therapeutic effects of MSCs are mainly based. Furthermore, some pathological conditions under which the application of MSCs should be done with caution are also mentioned.

Keywords

mesenchymal stem cells / differentiation / immunomodulation / regenerative medicine

Cite this article

Download citation ▾
Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine. Front Med, 2011, 5(4): 372‒378 https://doi.org/10.1007/s11684-011-0164-4

References

[1]
Greenwood HL, Singer PA, Downey GP, Martin DK, Thorsteinsdóttir H, Daar AS. Regenerative medicine and the developing world. PLoS Med 2006; 3(9): e381
CrossRef Pubmed Google scholar
[2]
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230–247
CrossRef Pubmed Google scholar
[3]
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317
CrossRef Pubmed Google scholar
[4]
Zhao RC, Liao LM, Han Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J Lab Clin Med 2004; 143(5): 284–291
CrossRef Pubmed Google scholar
[5]
Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6(11): 1282–1286
CrossRef Pubmed Google scholar
[6]
Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 2006; 103(26): 9912–9917
CrossRef Pubmed Google scholar
[7]
Fang BJ, Shi MX, Liao LM, Yang S, Liu Y, Zhao RC. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34-/Progenitors. J Hematother Stem Cell Res 2003; 12(6): 603–613
CrossRef Pubmed Google scholar
[8]
Fang BJ, Liao LM, Shi MX, Yang S, Zhao RC. Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow. J Lab Clin Med 2004; 143(4): 230–240
CrossRef Pubmed Google scholar
[9]
Guo H, Hu Y, Liao LM,Jiang XY, Liu JW, Ma L, Ma GJ, Zhao ZG, Yang SG, Zhao RC. Postembryonic subtotipotent stem cells derived from a variety of fetal tissues have multiple differentiation potential and greatly contribute to stem cell plasticity. China J Modern Med 2002; 12(16):1–9
[10]
Macias MI, Grande J, Moreno A, Domínguez I, Bornstein R, Flores AI. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 2010; 203(5):495.e9–495.e23
Pubmed
[11]
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 2011; 7(2): 342–363
CrossRef Pubmed Google scholar
[12]
De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25(1): 100–106
CrossRef Pubmed Google scholar
[13]
Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, Abele H, Schewe B, Just L, Skutella T, Bühring HJ. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 2007; 75(4): 279–291
CrossRef Pubmed Google scholar
[14]
Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23(10): 1549–1559
CrossRef Pubmed Google scholar
[15]
Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123–135
CrossRef Pubmed Google scholar
[16]
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41–49
CrossRef Pubmed Google scholar
[17]
Li KH, Han Q, Yan X, Liao LM, Zhao RC. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev 2010; 19(8): 1267–1275
CrossRef Pubmed Google scholar
[18]
Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol 2010; 248(10): 1415–1422
CrossRef Pubmed Google scholar
[19]
Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 2007; 16(5): 695–706
CrossRef Pubmed Google scholar
[20]
Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007; 35(9): 1466–1475
CrossRef Pubmed Google scholar
[21]
Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332(2): 370–379
CrossRef Pubmed Google scholar
[22]
Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004;78(1):83–88
Pubmed
[23]
Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RC. Engrafted bone marrow-derived flk-(1+)Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 2005; 11(1-2): 110–119
CrossRef Pubmed Google scholar
[24]
Bouffi C, Bony C, Courties G, Jorgensen C, Noël D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS ONE 2010; 5(12): e14247
CrossRef Pubmed Google scholar
[25]
Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15(1): 42–49
CrossRef Pubmed Google scholar
[26]
Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3): 1855–1863
Pubmed
[27]
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838–3843
CrossRef Pubmed Google scholar
[28]
Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104(26): 11002–11007
CrossRef Pubmed Google scholar
[29]
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1): 212–222
CrossRef Pubmed Google scholar
[30]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726–736
CrossRef Pubmed Google scholar
[31]
Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182(8): 1047–1057
CrossRef Pubmed Google scholar
[32]
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28(12): 2229–2238
CrossRef Pubmed Google scholar
[33]
Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109(12): 1543–1549
CrossRef Pubmed Google scholar
[34]
Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94(5): 678–685
CrossRef Pubmed Google scholar
[35]
Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC, Wang R, Qin C. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 2010; 1334: 65–72
CrossRef Pubmed Google scholar
[36]
Lu S, Lu C, Han Q, Li J, Du Z, Liao L, Zhao RC. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 2011; 279(1-3): 189–195
CrossRef Pubmed Google scholar
[37]
Guo M, Sun Z, Sun QY, Han Q, Yu CL, Wang DH, Qiao JH, Chen B, Sun WJ, Hu KX, Liu GX, Liu B, Zhao RC, Ai H. A modified haploidentical nonmyeloablative transplantation without T cell depletion for high-risk acute leukemia: successful engraftment and mild GVHD. Biol Blood Marrow Transplant 2009; 15(8): 930–937
CrossRef Pubmed Google scholar
[38]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815–1822
CrossRef Pubmed Google scholar
[39]
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1): 42–48
CrossRef Pubmed Google scholar
[40]
Shi D, Liao L, Zhang B, Liu R, Dou X, Li J, Zhu X, Yu L, Chen D, Zhao RC. Human adipose tissue-derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1-mediated inhibition of NF-κB signaling. Exp Hematol 2011; 39(2): 214–224, e1
CrossRef Pubmed Google scholar
[41]
Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004; 13(3): 263–271
CrossRef Pubmed Google scholar
[42]
Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, Li J, Li B, You S, Shi Y, Zhao RC. Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev 2007; 16(5): 719–732
CrossRef Pubmed Google scholar
[43]
Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 2009; 113(1): 46–57
CrossRef Pubmed Google scholar
[44]
Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 2005; 24(7): 458–463
CrossRef Pubmed Google scholar
[45]
Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, Vanbellinghen JF, Hafraoui K, Lejeune M, Gothot A, Fillet G, Beguin Y. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010; 16(6): 838–847
CrossRef Pubmed Google scholar
[46]
Zhou H, Guo M, Bian C, Sun Z, Yang Z, Zeng Y, Ai H, Zhao RC. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010; 16(3): 403–412
CrossRef Pubmed Google scholar
[47]
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557–563
CrossRef Pubmed Google scholar
[48]
Chen B, Hu J, Liao L, Sun Z, Han Q, Song Z, Zhao RC. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 2010; 159(3): 292–302
CrossRef Pubmed Google scholar
[49]
Yang Z, Bian C, Zhou H, Huang S, Wang S, Liao L, Zhao RC. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 2011; 20(2): 259–267
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the “863” Projects of Ministry of Science and Technology of P.R. China (No. 2011AA020100), the National Natural Science Foundation of China (Grant No. 30830052), the National Key Scientific Program of China (No. 2011CB964901), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT0909).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/