Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region

Zhiyuan Zhang

PDF(762 KB)
PDF(762 KB)
Front. Med. ›› 2011, Vol. 5 ›› Issue (4) : 401-413. DOI: 10.1007/s11684-011-0161-7
REVIEW

Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region

Author information +
History +

Abstract

Clinical imperatives for the reconstruction of jaw bone defects or resorbed alveolar ridge require new therapies or procedures instead of autologous/allogeneic bone grafts. Regenerative medicine, based on stem cell science and tissue engineering technology, is considered as an ideal alternative strategy for bone regeneration. In this paper, we review the current choices of cell source and strategies on directing the osteogenic differentiation of stem cells. The preclinical animal models for bone regeneration and the key translational points to clinical success in oral and maxillofacial region are also discussed. We propose comprehensive strategies based on stem cell and tissue engineering researches, allowing for clinical application in oral and maxillofacial region.

Keywords

bone regeneration / animal models / translational strategies / oral and maxillofacial region

Cite this article

Download citation ▾
Zhiyuan Zhang. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med, 2011, 5(4): 401‒413 https://doi.org/10.1007/s11684-011-0161-7

References

[1]
He Y, Zhang ZY, Zhu HG, Qiu W, Jiang X, Guo W. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. J Craniofac Surg 2007; 18(4): 800–805
CrossRef Pubmed Google scholar
[2]
Davo R, Malevez C, Rojas J. Immediate function in the atrophic maxilla using zygoma implants: a preliminary study. J Prosthet Dent 2007; 97(6 Suppl): S44–S51
CrossRef Pubmed Google scholar
[3]
Sjöström M, Sennerby L, Nilson H, Lundgren S. Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clin Implant Dent Relat Res 2007; 9(1): 46–59
CrossRef Pubmed Google scholar
[4]
Taylor GI. The current status of free vascularized bone grafts. Clin Plast Surg 1983; 10(1): 185–209
Pubmed
[5]
Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 2009; 45(3): 517–527
CrossRef Pubmed Google scholar
[6]
Joshi A. An investigation of post-operative morbidity following chin graft surgery. Br Dent J 2004; 196(4): 215–218, discussion 211
CrossRef Pubmed Google scholar
[7]
Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res 2003; 5(3): 154–160
CrossRef Pubmed Google scholar
[8]
Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med 1995; 1(12): 1322–1324
CrossRef Pubmed Google scholar
[9]
Hollinger JO, Winn S, Bonadio J. Options for tissue engineering to address challenges of the aging skeleton. Tissue Eng 2000; 6(4): 341–350
CrossRef Pubmed Google scholar
[10]
Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art. J Oral Maxillofac Surg 2009; 67(5): 1121–1127
CrossRef Pubmed Google scholar
[11]
Wang S, Zhang Z, Zhao J, Zhang X, Sun X, Xia L, Chang Q, Ye D, Jiang X. Vertical alveolar ridge augmentation with β-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 2009; 30(13): 2489–2498
CrossRef Pubmed Google scholar
[12]
Wang S, Zhang Z, Xia L, Zhao J, Sun X, Zhang X, Ye D, Uludağ H, Jiang X. Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 2010; 46(1): 91–100
CrossRef Pubmed Google scholar
[13]
Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 2010; 224(12): 1415–1440
CrossRef Pubmed Google scholar
[14]
Kassem M, Ankersen L, Eriksen EF, Clark BF, Rattan SI. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 1997; 7(6): 514–524
CrossRef Pubmed Google scholar
[15]
Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 2007; 1117(1): 62–72
CrossRef Pubmed Google scholar
[16]
Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2008; 2(4): 169–183
CrossRef Pubmed Google scholar
[17]
Alwattar BJ, Schwarzkopf R, Kirsch T. Stem cells in orthopaedics and fracture healing. Bull NYU Hosp Jt Dis 2011; 69(1): 6–10
Pubmed
[18]
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154–156
CrossRef Pubmed Google scholar
[19]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147
CrossRef Pubmed Google scholar
[20]
Polak JM, Bishop AE. Stem cells and tissue engineering: past, present, and future. Ann N Y Acad Sci 2006; 1068(1): 352–366
CrossRef Pubmed Google scholar
[21]
Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 2001; 7(1): 89–99
CrossRef Pubmed Google scholar
[22]
Jukes JM, van Blitterswijk CA, de Boer J. Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 2010; 4(3): 165–180
CrossRef Pubmed Google scholar
[23]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861–872
CrossRef Pubmed Google scholar
[24]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
CrossRef Pubmed Google scholar
[25]
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917–1920
CrossRef Pubmed Google scholar
[26]
Illich DJ, Demir N, Stojković M, Scheer M, Rothamel D, Neugebauer J, Hescheler J, Zöller JE. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 2011; 29(4): 555–563
CrossRef Pubmed Google scholar
[27]
Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, Kaplan D, Yang P, Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2011; 226(1): 150–157
CrossRef Pubmed Google scholar
[28]
Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32(22): 5065–5076
CrossRef Pubmed Google scholar
[29]
Ward BB, Brown SE, Krebsbach PH. Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Dis 2010; 16(8): 709–716
CrossRef Pubmed Google scholar
[30]
Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 2009; 30(27): 4522–4532
CrossRef Pubmed Google scholar
[31]
Mankani MH, Kuznetsov SA, Shannon B, Nalla RK, Ritchie RO, Qin Y, Robey PG. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol 2006; 168(2): 542–550
CrossRef Pubmed Google scholar
[32]
Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18(9): 959–963
CrossRef Pubmed Google scholar
[33]
Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49(3): 328–337
CrossRef Pubmed Google scholar
[34]
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001; 344(5): 385–386
CrossRef Pubmed Google scholar
[35]
Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004; 364(9436): 766–770
CrossRef Pubmed Google scholar
[36]
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211–228
CrossRef Pubmed Google scholar
[37]
Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23(3): 412–423
CrossRef Pubmed Google scholar
[38]
Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004; 22(5): 560–567
CrossRef Pubmed Google scholar
[39]
Conejero JA, Lee JA, Parrett BM, Terry M, Wear-Maggitti K, Grant RT, Breitbart AS. Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast Reconstr Surg 2006; 117(3): 857–863
CrossRef Pubmed Google scholar
[40]
Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 2007; 13(3): 619–627
CrossRef Pubmed Google scholar
[41]
Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32(6): 370–373
CrossRef Pubmed Google scholar
[42]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625–13630
CrossRef Pubmed Google scholar
[43]
Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 2010<month>Nov</month><day>5</day>. [Epub ahead of print]
CrossRef Pubmed Google scholar
[44]
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807–5812
CrossRef Pubmed Google scholar
[45]
Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14(5): 428–434
CrossRef Pubmed Google scholar
[46]
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149–155
CrossRef Pubmed Google scholar
[47]
Kato T, Hattori K, Deguchi T, Katsube Y, Matsumoto T, Ohgushi H, Numabe Y. Osteogenic potential of rat stromal cells derived from periodontal ligament. J Tissue Eng Regen Med2011<month>Jan</month><day>12</day>. [Epub ahead of print]
CrossRef Pubmed Google scholar
[48]
He H, Yu J, Cao J, E L, Wang D, Zhang H, Liu H.Biocompatibility and osteogenic capacity of periodontal ligament stem cells on nHAC/PLA and HA/TCP scaffolds. J Biomater Sci Polym Ed 2010<month>Jun</month><day>16</day>. [Epub ahead of print]
CrossRef Pubmed Google scholar
[49]
Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 2004; 19(9): 1379–1394
CrossRef Pubmed Google scholar
[50]
Raisz LG, Pilbeam CC, Fall PM. Prostaglandins: mechanisms of action and regulation of production in bone. Osteoporos Int 1993; 3(Suppl 1 ): 136–140
CrossRef Pubmed Google scholar
[51]
Weinreb M, Grosskopf A, Shir N. The anabolic effect of PGE2 in rat bone marrow cultures is mediated via the EP4 receptor subtype. Am J Physiol 1999; 276(2): E376–E383
Pubmed
[52]
Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992; 102(Pt 2): 341–351
Pubmed
[53]
Kelly KA, Gimble JM. 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 1998; 139(5): 2622–2628
CrossRef Pubmed Google scholar
[54]
Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 2010; 31(22): 5875–5885
CrossRef Pubmed Google scholar
[55]
Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095–1102
CrossRef Pubmed Google scholar
[56]
Notoya K, Nagai H, Oda T, Gotoh M, Hoshino T, Muranishi H, Taketomi S, Sohda T, Makino H. Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, TAK-778. J Pharmacol Exp Ther 1999; 290(3): 1054–1064
Pubmed
[57]
Gotoh M, Notoya K, Ienaga Y, Kawase M, Makino H. Enhancement of osteogenesis in vitro by a novel osteoblast differentiation-promoting compound, TAK-778, partly through the expression of Msx2. Eur J Pharmacol 2002; 451(1): 19–25
CrossRef Pubmed Google scholar
[58]
Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286(5446): 1946–1949
CrossRef Pubmed Google scholar
[59]
Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 2003; 308(3): 458–462
CrossRef Pubmed Google scholar
[60]
Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 2010; 25(11): 2470–2478
CrossRef Pubmed Google scholar
[61]
Bulgin D, Hodzic E, Komljenovic-Blitva D. Advanced and prospective technologies for potential use in craniofacial tissues regeneration by stem cells and growth factors. J Craniofac Surg 2011; 22(1): 342–348
CrossRef Pubmed Google scholar
[62]
Zhang X, Zara J, Siu RK, Ting K, Soo C. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 2010; 89(9): 865–878
CrossRef Pubmed Google scholar
[63]
Behr B, Tang C, Germann G, Longaker MT, Quarto N. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells 2011; 29(2): 286–296
CrossRef Pubmed Google scholar
[64]
Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A(8): 1544–1552
Pubmed
[65]
Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β1 on osteoblast differentiation. Bone 2001; 29(4): 323–330
CrossRef Pubmed Google scholar
[66]
de Jong DS, van Zoelen EJ, Bauerschmidt S, Olijve W, Steegenga WT. Microarray analysis of bone morphogenetic protein, transforming growth factor β, and activin early response genes during osteoblastic cell differentiation. J Bone Miner Res 2002; 17(12): 2119–2129
CrossRef Pubmed Google scholar
[67]
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529–2543
CrossRef Pubmed Google scholar
[68]
Srouji S, Kizhner T, Livne E. 3D scaffolds for bone marrow stem cell support in bone repair. Regen Med 2006; 1(4): 519–528
CrossRef Pubmed Google scholar
[69]
Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials 2006; 27(33): 5651–5657
CrossRef Pubmed Google scholar
[70]
Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 2008; 29(36): 4792–4799
CrossRef Pubmed Google scholar
[71]
Xia L, Zhang Z, Chen L, Zhang W, Zeng D, Zhang X, Chang J, Jiang X. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur Cell Mater 2011; 22: 68–82, discussion 83
Pubmed
[72]
Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators. Tissue Eng Part A 2010; 16(2): 393–404
CrossRef Pubmed Google scholar
[73]
Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992; 12(3): 202–212
Pubmed
[74]
Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 1998; 39(2): 190–199
CrossRef Google scholar
[75]
Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng 2003; 9(6): 1179–1188
CrossRef Pubmed Google scholar
[76]
Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1(4): 245–260
CrossRef Pubmed Google scholar
[77]
Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310(5751): 1135–1138
CrossRef Pubmed Google scholar
[78]
Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006; 11: 43–56
Pubmed
[79]
Fukui N, Sato T, Kuboki Y, Aoki H. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation. Biomed Mater Eng 2008; 18(1): 25–33
Pubmed
[80]
Tare RS, Kanczler J, Aarvold A, Jones AM, Dunlop DG, Oreffo RO. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H 2010; 224(12): 1455–1470
CrossRef Pubmed Google scholar
[81]
Zhao J, Hu J, Wang SY, Sun X, Xia L, Zhang X, Zhang Z, Jiang X. Combination of β-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Oral Dis 2010; 16(1): 46–54
CrossRef Pubmed Google scholar
[82]
Vertenten G, Gasthuys F, Cornelissen M, Schacht E, Vlaminck L. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. Vet Comp Orthop Traumatol 2010; 23(3): 153–162
Pubmed
[83]
Kawakatsu N, Oda S, Kinoshita A, Kikuchi S, Tsuchioka H, Akizuki T, Hayashi C, Kokubo S, Ishikawa I, Izumi Y. Effect of rhBMP-2 with PLGA/gelatin sponge type (PGS) carrier on alveolar ridge augmentation in dogs. J Oral Rehabil 2008; 35(9): 647–655
CrossRef Pubmed Google scholar
[84]
Xia L, Xu Y, Wei J, Zeng D, Ye D, Liu C, Zhang Z, Jiang X. Maxillary sinus floor elevation using a tissue-engineered bone with rhBMP-2-loaded porous calcium phosphate cement scaffold and bone marrow stromal cells in rabbits. Cells Tissues Organs 2011<month>Apr</month><day>13</day>. [Epub ahead of print].
CrossRef Pubmed Google scholar
[85]
Xia L, Xu Y, Chang Q, Sun X, Zeng D, Zhang W, Zhang X, Zhang Z, Jiang X. Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int 2011; 89(1): 53–64
CrossRef Pubmed Google scholar
[86]
Sun XJ, Xia LG, Chou LL, Zhong W, Zhang XL, Wang SY, Zhao J, Jiang XQ, Zhang ZY. Maxillary sinus floor elevation using a tissue engineered bone complex with BMP-2 gene modified bMSCs and a novel porous ceramic scaffold in rabbits. Arch Oral Biol 2010; 55(3): 195–202
CrossRef Pubmed Google scholar
[87]
Jiang XQ, Sun XJ, Lai HC, Zhao J, Wang SY, Zhang ZY. Maxillary sinus floor elevation using a tissue-engineered bone complex with β-TCP and BMP-2 gene-modified bMSCs in rabbits. Clin Oral Implants Res 2009; 20(12): 1333–1340
CrossRef Pubmed Google scholar
[88]
Sun XJ, Zhang ZY, Wang SY, Gittens SA, Jiang XQ, Chou LL. Maxillary sinus floor elevation using a tissue-engineered bone complex with OsteoBone and bMSCs in rabbits. Clin Oral Implants Res 2008; 19(8): 804–813
CrossRef Pubmed Google scholar
[89]
Wang S, Zhao J, Zhang W, Ye D, Yu W, Zhu C, Zhang X, Sun X, Yang C, Jiang X, Zhang Z. Maintenance of phenotype and function of cryopreserved bone-derived cells. Biomaterials 2011; 32(15): 3739–3749
CrossRef Pubmed Google scholar
[90]
Derong Z, Lian G, Jiayu L, Xiuli Z, Zhiyuan Z, Xinquan J. Anatomic and histological analysis in a goat model used for maxillary sinus floor augmentation with simultaneous implant placement. Clin Oral Implants Res 2010; 21(1): 65–70
CrossRef Pubmed Google scholar
[91]
Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludağ H, Zhang X, Qian Y, Jiang X. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A 2011; 17(9-10): 1313–1325
CrossRef Pubmed Google scholar
[92]
Johnson EO, Troupis T, Soucacos PN. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery 2011; 31(3): 176–182
CrossRef Pubmed Google scholar
[93]
Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003; 8(21): 980–989
CrossRef Pubmed Google scholar
[94]
Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 2008; 3(4): 254–264
CrossRef Pubmed Google scholar
[95]
Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006; 10(1): 7–19
CrossRef Pubmed Google scholar
[96]
Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W, Zhao J, Wang S, Zhang W, Zhu C, Zhou J, He J, Wang Y, Xu F, Huang Y, Jiang X. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells 2011; 29(9): 1380–1390
Pubmed
[97]
Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann KU, Hess A, Brune K, Greil P, Stürzl M, Horch RE. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 2006; 12(7): 1721–1731
CrossRef Pubmed Google scholar
[98]
Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 2003; 112(6): 1636–1644
CrossRef Pubmed Google scholar
[99]
Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009; 20(Suppl 4): 185–206
CrossRef Pubmed Google scholar
[100]
Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009; 20(Suppl 4): 172–184
CrossRef Pubmed Google scholar
[101]
Cho LR, Kim DG, Kim JH, Byon ES, Jeong YS, Park CJ. Bone response of Mg ion-implanted clinical implants with the plasma source ion implantation method. Clin Oral Implants Res 2010; 21(8): 848–856
Pubmed
[102]
Park JW. Increased bone apposition on a titanium oxide surface incorporating phosphate and strontium. Clin Oral Implants Res 2011; 22(2): 230–234
CrossRef Pubmed Google scholar
[103]
Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Devices 2010; 7(2): 241–256
CrossRef Pubmed Google scholar
[104]
Liu X, Chu PK, Ding C. Surface nano-functionalization of biomaterials. Mater Sci Eng Rep 2010; 70(3-6): 275–302
CrossRef Google scholar
[105]
Gimbel M, Ashley RK, Sisodia M, Gabbay JS, Wasson KL, Heller J, Wilson L, Kawamoto HK, Bradley JP. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J Craniofac Surg 2007; 18(4): 895–901
CrossRef Pubmed Google scholar
[106]
Herford AS, Cicciù M. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J Craniofac Surg 2010; 21(6): 1970–1975
CrossRef Pubmed Google scholar
[107]
Di Bella C, Farlie P, Penington AJ. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 2008; 14(4): 483–490
CrossRef Pubmed Google scholar
[108]
Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 2010; 363(25): 2396–2405
CrossRef Pubmed Google scholar
[109]
Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous β-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29(29): 3973–3982
CrossRef Pubmed Google scholar
[110]
Ueda M, Yamada Y, Kagami H, Hibi H. Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent 2008; 17(1): 82–90
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(762 KB)

Accesses

Citations

Detail

Sections
Recommended

/