Changes of phenotype and function of human CD4 CD25 T cells induced by transfection of Foxp3

WU Kui, BI Yutian, WANG Yaoli, WANG Changzheng

PDF(77 KB)
PDF(77 KB)
Front. Med. ›› 2008, Vol. 2 ›› Issue (4) : 366-369. DOI: 10.1007/s11684-008-0070-6

Changes of phenotype and function of human CD4 CD25 T cells induced by transfection of Foxp3

  • WU Kui, BI Yutian, WANG Yaoli, WANG Changzheng
Author information +
History +

Abstract

The aim of this paper is to explore the effects of transfection of Foxp3 gene on the phenotype and function of naive CD4+ T cells. The pMSCV-Foxp3 retroviral vector encoding Foxp3 gene was transduced into the PT67 packaging cell line. Virus-containing supernatant was applied to differentiate CD4+CD25- T cells. The resulting cells were sorted with flow cytometry. The expressions of CD25, CD127, CTLA-4 and the proliferation of transfected T cells were examined. The effect of transfected CD4+ T cells on the proliferation and cytokine production of CD4+CD25- T cells was examined. Foxp3-gene transfected CD4+ T cells could express Foxp3 and transfection of Foxp3 gene up-regulated the expressions of CD25 and CTLA-4, but down-regulated CD127 expression. After transfection, the proliferation of CD4+ T cells was eliminated. Transfected T cells inhibited the proliferation of CD4+CD25- T cells. CD4+CD25- T cells acquired a regulatory phenotype and function after it was transduced with the Foxp3 gene. This suggested a key role of Foxp3 in the generation of CD4+CD25+ regulatory T cells.

Cite this article

Download citation ▾
WU Kui, BI Yutian, WANG Yaoli, WANG Changzheng. Changes of phenotype and function of human CD4 CD25 T cells induced by transfection of Foxp3. Front. Med., 2008, 2(4): 366‒369 https://doi.org/10.1007/s11684-008-0070-6

References

1. Von Boehmer H . Mechanismsof suppression by suppressor T cells. NatImmunol, 2005, 6(4): 338–344. doi:10.1038/ni1180
2. Gavin M A, Rasmussen J P, Fontenot J D, Vasta V, Manganiello V C, Beavo J A, Rudensky A Y . Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 2007, 445(7129): 771–775. doi:10.1038/nature05543
3. Tang Q, Bluestone J A . The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol, 2008, 9(3): 239–244. doi:10.1038/ni1572
4. Kajsa W, Shimon S . Regulatory T cells as potentialimmunotherapy in allergy. Curr Opin AllergyClin Immunol, 2006, 6(6): 482–488
5. Williams L M, Rudensky A Y . Maintenance of the Foxp3-dependentdevelopmental program in mature regulatory T cells requires continuedexpression of Foxp3. Nat Immunol, 2007, 8(3): 277–284. doi:10.1038/ni1437
6. Wan Y Y, Flavell R A . Regulatory T-cell functionsare subverted and converted owing to attenuated Foxp3 expression. Nature, 2007, 445(7129): 766–770. doi:10.1038/nature05479
7. Pillai V, Ortega S B, Wang C K, Karandikar N J . Transient regulatory T-cells: A state attained by all activated humanT-cells. Clin Immunol, 2007, 123(1): 18–29. doi:10.1016/j.clim.2006.10.014
8. Wang J, Ioan-Facsinay A, van der Voort E I, Huizinga T W, Toes R E . Transient expression of FOXP3in human activated nonregulatory CD4+ Tcells. Eur J Immunol, 2007, 37(1): 129–138. doi:10.1002/eji.200636435
9. Bruder D, Probst-Kepper M, Westendorf A M, Geffers R, Beissert S, Loser K, Von Boehmer H, Buer J, Hansen W . Frontline: Neuropilin-1: a surface marker of regulatoryT cells. Eur J Immunol, 2004, 34(3): 623–630. doi:10.1002/eji.200324799
10. Zheng Y, Josefowicz S Z, Kas A, Chu T T, Gavin M A, Rudensky A Y . Genome-wide analysis of Foxp3 target genes in developing and matureregulatory T cells. Nature, 2007, 445(7130): 936–940. doi:10.1038/nature05563
11. Fontenot J D, Gavin M A, Rudensky A Y . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4(4): 330–336. doi:10.1038/ni904
12. Zheng Y, Rudensky A Y . Foxp3 in control of regulatoryT cell lineage. Nat Immunol, 2007, 8(5): 457–462. doi:10.1038/ni1455
13. Vignali D A, Collison L W, Workman C J . How regulatory T cells work. Nat Rev Immunol, 2008, 8(8): 523–532. doi:10.1038/nri2343
14. Barnes P J . Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol, 2008, 8(3): 183–192. doi:10.1038/nri2254
15. Campbell D J, Ziegler S F . FOXP3 modifies the phenotypicand functional properties of regulatory T cells. Nat Rev Immunol, 2007, 7(4): 305–310. doi:10.1038/nri2061
16. Xystrakis E, Boswell S E, Hawrylowicz C M . T regulatory T cells and the control of allergic disease. Expert Opin Biol Ther, 2006, 6(2): 121–133. doi:10.1517/14712598.6.2.121
17. Lin Y L, Shieh C C, Wang J Y . The functional insufficiency of human CD4+CD25high T-regulatory cellsin allergic asthma is subjected to TNF-α modulation. Allergy, 2008, 63(1): 67–74
18. Hartl D, Koller B, Mehlhorn A T, Reinhardt D, Nicolai T, Schendel D J, Griese M, Krauss-Etschmann S . Quantitative and functionalimpairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol, 2007, 119(5): 1258–1266. doi:10.1016/j.jaci.2007.02.023
19. Leech M D, Benson R A, De Vries A, Fitch P M, Howie S E . Resolution of Der p1-induced allergicairway inflammation is dependent on CD4+CD25+Foxp3+ regulatory cells. J Immunol, 2007, 179(10): 7050–7058
20. Holgate S T, Polosa R . Treatment strategies forallergy and asthma. Nat Rev Immunol, 2008, 8(3): 218–230. doi:10.1038/nri2262
21. Sun K, Lin K, Wu K, Wang C . Effects andmechanism of CD4+ CD25+ T cells on the airway inflammation of asthmatic mice. Zhonghua Jiehe He Huxi Zazhi, 2006, 29(2): 109–112 (in Chinese)
AI Summary AI Mindmap
PDF(77 KB)

Accesses

Citations

Detail

Sections
Recommended

/