Current techniques for assessing developmental neurotoxicity of pesticides
GAO Yu1, TIAN Ying2, SHEN Xiaoming3
Author information+
1.Environmental Health Department, Shanghai Jiao Tong University School of Medicine; 2.Environmental Health Department, Shanghai Jiao Tong University School of Medicine;Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Children's Environmental Health, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; 3.Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Children's Environmental Health, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
Show less
History+
Published
05 Dec 2008
Issue Date
05 Dec 2008
Abstract
Organophosphates (OPs) and Pyrethroids (PRY) have been widely used in agriculture and in the home as broad spectrum insecticides, but may produce considerable risk to human health, especially to children. Children are more susceptible to environmental exposure, and concern about the neurotoxic effects of pesticide exposure on children is increasing. There is a need for better understanding of the potential developmental neurotoxicity of pesticides. Techniques for assessing developmental neurotoxicity of pesticides will continue to be developed, rendering a need for flexibility of testing paradigms. Current techniques used in evaluating the developmental neurotoxicity of OPs and PRY are presented in this review. These include: (1) In vitro techniques (PC12 cells, C6 cells and other cell models); (2) Non-mammalian models (sea urchins, zebrafish and other non-mammalian models); and (3) In vivo mammalian models (morphological techniques, neurobehavioral assessments and biomarkers).
GAO Yu, TIAN Ying, SHEN Xiaoming.
Current techniques for assessing developmental neurotoxicity of pesticides. Front. Med., https://doi.org/10.1007/s11684-008-0064-4
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Costa L G . Current issues in organophosphate toxicology.Clin Chim Acta, 2006, 366(1–2): 1–13
2. Perry M J, Venners S A, Barr D B, Xu X . Environmentalpyrethroid and organophosphorus insecticide exposures and sperm concentration. Reprod Toxicol, 2007, 23(1): 113–118. doi:10.1016/j.reprotox.2006.08.005
3. He F, Chen S, Tang X, Gan W, Tao B, Wen B . Biologicalmonitoring of combined exposure to organophosphates and pyrethroids. Toxicol Lett, 2002, 134(1–3): 119–124. doi:10.1016/S0378-4274(02)00180-7
4. Szpir M . Newthinking on neurodevelopment. Environ HealthPerspect, 2006, 114(2): A100–107
5. U.S. EPA (U.S. Environmental Protection Agency). Opportunities to Improve Data Quality and Children'sHealth Through the Food Quality Protection Act. 2006. Report no. 2006-P-00009.
6. Eskenazi B, Marks A R, Bradman A, Harley K, Barr D B, Johnson C, Morga N, Jewell N P . Organophosphate pesticide exposure and neurodevelopmentin young Mexican-American children. EnvironHealth Perspect, 2007, 115(5): 792–798
7. Engel S M, Berkowitz G S, Barr D B, Teitelbaum S L, Siskind J, Meisel S J, Wetmur J G, Wolff M S . Prenatal organophosphate metabolite andorganochlorine levels and performance on the Brazelton Neonatal BehavioralAssessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol, 2007, 165(12): 1397–1404. doi:10.1093/aje/kwm029
8. Slotkin T A, MacKillop E A, Ryde I T, Tate C A, Seidler F J . Screening for developmental neurotoxicityusing PC12 cells: comparisons of organophosphates with a carbamate,an organochlorine, and divalent nickel. Environ Health Perspect, 2007, 115(1): 93–101
9. Costa L G . Neurotoxicity testing: a discussion of in vitro alternatives. Environ Health Perspect, 1998, 106 (Suppl 2): 505–510. doi:10.2307/3433802
10. Slotkin T A . Guidelines for developmental neurotoxicity and their impact on organophosphatepesticides: a personal view from an academic perspective. Neurotoxicology, 2004, 25(4): 631–640. doi:10.1016/S0161-813X(03)00050-0
11. Colborn T :Acase for revisiting the safety of pesticides: a closer look at neurodevelopment. Environ Health Perspect, 2006, 114(1): 10–17
12. Qiao D, Seidler F J, Slotkin T A . Developmental neurotoxicity of chlorpyrifos modeled invitro: comparative effects of metabolites and other cholinesteraseinhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect, 2001, 109(9): 909–913. doi:10.2307/3454991
13. Harry G J, Billingsley M, Bruinink A, Campbell I L, Classen W, Dorman D C, Galli C, Ray D, Smith R A, Tilson H A . In vitro techniques for the assessmentof neurotoxicity. Environ Health Perspect, 1998, 106 (Suppl 1): 131–158. doi:10.2307/3433917
14. Tran V, Hoffman N, Mofunanaya A, Pryor S C, Ojugbele O, McLaughlin A, Gibson L, Bonventre J A, Flynn K, Weeks B S . Bifenthrin inhibits neurite outgrowthin differentiating PC12 cells. Med SciMonit, 2006, 12(2): BR57–62
15. Nandi A, Chandil D, Lechesal R, Pryor S C, McLaughlin A, Bonventre J A, Flynnx K, Weeks B S . Bifenthrin causes neurite retraction in the absence ofcell death: a model for pesticide associated neurodegeneration. Med Sci Monit, 2006, 12(5): BR169–173
16. Mense S M, Sengupta A, Lan C, Zhou M, Bentsman G, Volsky D J, Whyatt R M, Perera F P, Zhang L . The commoninsecticides cyfluthrin and chlorpyrifos alter the expression of asubset of genes with diverse functions in primary human astrocytes. Toxicol Sci, 2006, 93(1): 125–135. doi:10.1093/toxsci/kfl046
17. Giordano G, Afsharinejad Z, Guizzetti M, Vitalone A, Kavanagh T J, Costa L G . Organophosphorus insecticides chlorpyrifos and diazinonand oxidative stress in neuronal cells in a genetic model of glutathionedeficiency. Toxicol Appl Pharmacol, 2007, 219(2–3): 181–189. doi:10.1016/j.taap.2006.09.016
18. Axelrad J C, Howard C V, McLean W G . Interactions between pesticides and components of pesticideformulations in an in vitro neurotoxicity test. Toxicology, 2002, 173(3): 259–268. doi:10.1016/S0300-483X(02)00036-7
19. Song X, Violin J D, Seidler F J, Slotkin T A . Modeling the developmental neurotoxicity of chlorpyrifos in vitro:macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol, 1998, 151(1): 182–191. doi:10.1006/taap.1998.8424
20. Crumpton T L, Seidler F J, Slotkin T A . Developmental neurotoxicity of chlorpyrifos in vivo andin vitro: effects on nuclear transcription factors involved in cellreplication and differentiation. BrainRes, 2000, 857(1–2): 87–98. doi:10.1016/S0006-8993(99)02357-4
21. Crumpton T L, Seidler F J, Slotkin T A . Is oxidative stress involved in the developmental neurotoxicityof chlorpyrifos? Brain Res Dev Brain Res, 2000, 121(2): 189–195. doi:10.1016/S0165-3806(00)00045-6
22. Jameson R R, Seidler F J, Qiao D, Slotkin T A . Chlorpyrifos affects phenotypic outcomes in a model of mammalianneurodevelopment: critical stages targeting differentiation in PC12cells. Environ Health Perspect, 2006, 114(5): 667–672.
23. Qiao D, Seidler F J, Slotkin T A . Oxidative mechanisms contributing to the developmentalneurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol, 2005, 206(1): 17–26. doi:10.1016/j.taap.2004.11.003
24. Abreu-Villaca Y, Seidler F J, Qiao D, Slotkin T A . Modeling the developmental neurotoxicity of nicotine in vitro: cellacquisition, growth and viability in PC12 cells. Brain Res Dev Brain Res, 2005, 154(2): 239–246. doi:10.1016/j.devbrainres.2004.10.018
25. Tian X, Sun X, Suszkiw J B . Upregulation of tyrosine hydroxylase and downregulationof choline acetyltransferase in lead-exposed PC12 cells: the roleof PKC activation. Toxicol Appl Pharmacol, 2000, 167(3): 246–252. doi:10.1006/taap.2000.8996
26. Garcia S J, Seidler F J, Crumpton T L, Slotkin T A . Does the developmental neurotoxicity of chlorpyrifos involve glialtargets? Macromolecule synthesis, adenylyl cyclase signaling, nucleartranscription factors, and formation of reactive oxygen in C6 gliomacells. Brain Res, 2001, 891(1–2): 54–68. doi:10.1016/S0006-8993(00)03189-9
27. Garcia S J, Seidler F J, Qiao D, Slotkin T A . Chlorpyrifos targets developing glia: effects on glial fibrillaryacidic protein. Brain Res Dev Brain Res, 2002, 133(2): 151–161. doi:10.1016/S0165-3806(02)00283-3
28. Garcia S J, Seidler F J, Slotkin T A . Developmental neurotoxicity elicited by prenatal or postnatalchlorpyrifos exposure: effects on neurospecific proteins indicatechanging vulnerabilities. Environ HealthPerspect, 2003, 111(3): 297–303
29. Schuh R A, Lein P J, Beckles R A, Jett D A . Noncholinesterasemechanisms of chlorpyrifos neurotoxicity: altered phosphorylationof Ca2+/cAMP response element binding proteinin cultured neurons. Toxicol Appl Pharmacol, 2002, 182(2): 176–185. doi:10.1006/taap.2002.9445
30. Grunwald D J, Eisen J S . Headwaters of the zebrafish– emergence of a new model vertebrate. Nat Rev Genet, 2002, 3(9): 717–724. doi:10.1038/nrg892
31. Moens C B, Prince V E . Constructing the hindbrain:insights from the zebrafish. Dev Dyn, 2002, 224(1): 1–17. doi:10.1002/dvdy.10086
32. Buznikov G A, Bezuglov V V, Nikitina L A, Slotkin T A, Lauder J M . Cholinergic regulation ofthe sea urchin embryonic and larval development. Ross Fiziol Zh Im I M Sechenova, 2001, 87(11): 1548–1556
33. Buznikov G A, Nikitina L A, Bezuglov V V, Lauder J M, Padilla S, Slotkin T A . An invertebrate model of the developmental neurotoxicity of insecticides:effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ Health Perspect, 2001, 109(7): 651–661. doi:10.2307/3454780
34. Buznikov G A, Nikitina L A, Bezuglov V V, Milosevic I, Lazarevic L, Rogac L, Ruzdijic S, Slotkin T A, Rakic L M . Sea urchin embryonic development provides a model forevaluating therapies against beta-amyloid toxicity. Brain Res Bull, 2008, 75(1): 94–100. doi:10.1016/j.brainresbull.2007.07.026
35. Shmukier Y B, Buznikov G A . Functional coupling of neurotransmitterswith second messengers during cleavage divisions: facts and hypotheses. Perspect Dev Neurobiol, 1998, 5(4): 469–480
36. Levin E D, Chrysanthis E, Yacisin K, Linney E . Chlorpyrifosexposure of developing zebrafish: effects on survival and long-termeffects on response latency and spatial discrimination. Neurotoxicol Teratol, 2003, 25(1): 51–57. doi:10.1016/S0892-0362(02)00322-7
37. Behra M, Cousin X, Bertrand C, Vonesch J L, Biellmann D, Chatonnet A, Strahle U . Acetylcholinesteraseis required for neuronal and muscular development in the zebrafishembryo. Nat Neurosci, 2002, 5(2): 111–118. doi:10.1038/nn788
38. Perz-Edwards A, Hardison N L, Linney E . Retinoic acid-mediated gene expression in transgenicreporter zebrafish. Dev Biol, 2001, 229(1): 89–101. doi:10.1006/dbio.2000.9979
39. Levin E D, Bencan Z, Cerutti D T . Anxiolytic effects of nicotine in zebrafish. Physiol Behav, 2007, 90(1): 54–58. doi:10.1016/j.physbeh.2006.08.026
40. Levin E D, Swain H A, Donerly S, Linney E . Developmentalchlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol, 2004, 26(6): 719–723. doi:10.1016/j.ntt.2004.06.013
41. Levin E D, Chen E . Nicotinic involvement inmemory function in zebrafish. NeurotoxicolTeratol, 2004, 26(6): 731–735. doi:10.1016/j.ntt.2004.06.010
42. Sales K M, Kingston S T, Doyle K M, Purcell W M . Preliminary characterisation of an in vitro paradigm for the studyof the delayed effects of organophosphorus compounds: hen embryo brainspheroids. Toxicology, 2004, 195(2–3): 187–202. doi:10.1016/j.tox.2003.10.002
43. Muhlig-Versen M, da Cruz A B, Tschape J A, Moser M, Buttner R, Athenstaedt K, Glynn P, Kretzschmar D . Loss of Swiss cheese/neuropathy target esterase activitycauses disruption of phosphatidylcholine homeostasis and neuronaland glial death in adult Drosophila. JNeurosci, 2005, 25(11): 2865–2873. doi:10.1523/JNEUROSCI.5097-04.2005
44. Kretzschmar D, Hasan G, Sharma S, Heisenberg M, Benzer S . The Swiss cheese mutant causesglial hyperwrapping and brain degeneration in Drosophila. J Neurosci, 1997, 17(19): 7425–7432
45. Buckingham S D, Pym L, Sattelle D B . Oocytes as an expression system for studying receptor/channeltargets of drugs and pesticides. MethodsMol Biol, 2006, 322: 331–345. doi:10.1007/978-1-59745-000-3_23
46. U.S. EPA (U.S. Environmental Protection Agency). Health Effects Test Guidelines OPPTS 870.6300, DevelopmentalNeurotoxicity Study. 1998 .
47. OECD (Organization of Economic Cooperation andDevelopment) Revised Draft Guideline 426: Developmental NeurotoxicityStudy. 1999 .
48. Hass U . Theneed for developmental neurotoxicity studies in risk assessment fordevelopmental toxicity. Reprod Toxicol, 2006, 22(2): 148–156. doi:10.1016/j.reprotox.2006.04.009
49. Kaufmann W, Groters S . Developmental neuropathologyin DNT-studies–a sensitive tool for the detection and characterizationof developmental neurotoxicants. ReprodToxicol, 2006, 22(2): 196–213. doi:10.1016/j.reprotox.2006.04.021
50. Tian Y, Ishikawa H, Yamauchi T . Analysis of cytogenetic and developmental effects onpre-implantation, mid-gestation and near-term mouse embryos aftertreatment with trichlorfon during zygote stage. Mutat Res, 2000, 471(1–2): 37–44
51. Tian Y, Yamauchi T . Micronucleus formation in3-day mouse embryos associated with maternal exposure to chlorpyrifosduring the early preimplantation period. Reprod Toxicol, 2003, 17(4): 401–405. doi:10.1016/S0890-6238(03)00039-X
52. Tian Y, Ishikawa H, Yamaguchi T, Yamauchi T, Yokoyama K . Teratogenicity and developmentaltoxicity of chlorpyrifos. Maternal exposure during organogenesis inmice. ReprodToxicol, 2005, 20(2): 267–270. doi:10.1016/j.reprotox.2005.01.012
53. Roy T S, Sharma V, Seidler F J, Slotkin T A . Quantitative morphological assessment reveals neuronal and glialdeficits in hippocampus after a brief subtoxic exposure to chlorpyrifosin neonatal rats. Brain Res Dev Brain Res, 2005, 155(1): 71–80. doi:10.1016/j.devbrainres.2004.12.004
54. Roy T S, Seidler F J, Slotkin T A . Morphologic effects of subtoxic neonatal chlorpyrifosexposure in developing rat brain: regionally selective alterationsin neurons and glia. Brain Res Dev BrainRes, 2004, 148(2): 197–206. doi:10.1016/j.devbrainres.2003.12.004
55. Cory-Slechta D A, Crofton K M, Foran J A, Ross J F, Sheets L P, Weiss B, Mileson B . Methods to identify and characterizedevelopmental neurotoxicity for human health risk assessment. I: behavioraleffects. EnvironHealth Perspect, 2001, 109 (Suppl 1): 79–91. doi:10.2307/3434849
56. Icenogle L M, Christopher N C, Blackwelder W P, Caldwell D P, Qiao D, Seidler F J, Slotkin T A, Levin E D . Behavioral alterations inadolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifosduring neurulation. Neurotoxicol Teratol, 2004, 26(1): 95–101. doi:10.1016/j.ntt.2003.09.001
57. Ricceri L, Venerosi A, Capone F, Cometa M F, Lorenzini P, Fortuna S, Calamandrei G . Developmental neurotoxicityof organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifosalters sex-specific behaviors at adulthood in mice. Toxicol Sci, 2006, 93(1): 105–113. doi:10.1093/toxsci/kfl032
58. Timofeeva O A, Roegge C S, Seidler F J, Slotkin T A, Levin E D . Persistent cognitive alterationsin rats after early postnatal exposure to low doses of the organophosphatepesticide, diazinon. Neurotoxicol Teratol, 2008, 30(1): 38–45. doi:10.1016/j.ntt.2007.10.002
59. Shafer T J, Meyer D A, Crofton K M . Developmental neurotoxicity of pyrethroid insecticides:critical review and future research needs. Environ Health Perspect, 2005, 113(2): 123–136
60. Slotkin T A, Bodwell B E, Levin E D, Seidler F J . Neonatal exposure to low doses of diazinon: long-term effects onneural cell development and acetylcholine systems. Environ Health Perspect, 2008, 116(3): 340–348
61. Timofeeva O A, Gordon C J . Changes in EEG power spectraand behavioral states in rats exposed to the acetylcholinesteraseinhibitor chlorpyrifos and muscarinic agonist oxotremorine. Brain Res, 2001, 893(1–2): 165–177. doi:10.1016/S0006-8993(00)03309-6
62. Lengyel Z, Fazakas Z, Nagymajtenyi L . Changes in the central nervous activity of rats treatedwith dimethoate in combination with other neurotoxicants in differentphases of ontogenesis. Arh Hig Rada Toksikol, 2005, 56(3): 257–264
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.